

Bunch Lengthening VSR

Jun-hyoung Kim DANE, POSTECH 05/03/2025

Contents

- 1. Phase space diagram and particle tracking
- 2. Proper choice of harmonic cavities
- 3. Bunch shortening VSR
- 4. Conclusion

The Hamiltonian satisfying equations of motion is $\mathcal{H}(\tau, \delta) = \frac{1}{2}\eta\delta^2 + \frac{eV_1}{2\pi h\beta^2 E}U(\tau)$,

where
$$U(\tau) = \cos(\omega_{\rm rf}\tau + \phi_{1\rm s}) - \cos\phi_{1\rm s} - \frac{r_1}{m_1}[\cos(m_1\omega_{\rm rf}\tau + \phi_{2\rm s}) - \cos\phi_{2\rm s}]$$

$$-\frac{\tau_2}{m_2} [\cos(m_2 \omega_{\rm rf} \tau + \phi_{\rm 3s}) - \cos \phi_{\rm 3s}] + \omega_{\rm rf} \tau \sin \phi_{\rm 0s}$$

For PLS – II with $m_1 = 3$ and $m_2 = 3.5$, *BLF* @ odd FPs = 5.7 \rightarrow Bunch Length = 96 ps

Particle Tracking for *odd* FPs:

However, Particle Tracking for even FPs :

- Bunch must be shorter than natural bunch length = 16.8 ps
- Bunch split?

The answer lay in the basic :

 \Rightarrow *Maybe* high positive voltage gradient at $\omega_{rf}\tau = 2\pi$ splits the bunch

What about integer harmonic cavities? e.g. $m_1 = 3, m_2 = 4$:

 \Rightarrow Should we abandon the Bunch Lengthening VSR concept?

Proper choice of harmonic cavities

If we choose $m_1 = 2.5$ and $m_2 = 3$, then *BLF* @ odd FPs = 6.5

 \rightarrow Bunch Length @ odd FPs = 108.8 ps

• No bunch splitting at even FPs!

Proper choice of harmonic cavities

Particle Tracking for *odd* FPs:

Proper choice of harmonic cavities

Particle Tracking for *even* FPs :

• Bunch length at even FPs = 7.1 ps

BESSY chose $m_1 = 3$ and $m_2 = 3.5$ to avoid following problems :

- If m₁ = 2 and m₂ = 2.5, the cavities become larger at the same V' and might not longer fit into one straight section or would require operation at an unreasonably high accelerating field.
- If $m_1 = 4$ and $m_2 = 4.5$, the structure become smaller and raises the concern of increased excitation of HOMs, leading to beam instabilities.

Thus, $m_1 = 2.5$ and $m_2 = 3$ might be an only solution for Bunch Lengthening VSR if we have to include 3HC in harmonic cavities.

Recall)

Choose
$$\phi_{1s} = \phi_{2s} = \phi_{3s} = 0$$

Even fixed points :

$$V' = \frac{2\pi h}{c} (f_0 V_0 + f_1 V_1 + f_2 V_2)$$

Odd fixed points at $f_1V_1 + f_2V_2 = 0$:

$$V' = \frac{2\pi h}{c} f_0 V_0, \qquad \left| \frac{V_1}{V_2} \right| = \frac{f_2}{f_1}$$

Revise) Choose $\phi_{1s} = \pi$, Even fixed points :

$$V' = \frac{2\pi h}{c} (-f_0 V_0 + f_1 V_1 \cos \phi_{2s} + f_2 V_2 \cos \phi_{3s})$$

Odd fixed points at $f_1V_1 \cos \phi_{2s} + f_2V_2 \cos \phi_{3s} = 0$,:

$$V' = -\frac{2\pi h}{c} f_0 V_0, \qquad \frac{V_1}{V_2} = -\frac{f_2 \cos \phi_{3s}}{f_1 \cos \phi_{2s}}$$

Choose $\phi_{2s} = \phi_{3s} = \pi : \frac{V_1}{V_2} = -\frac{f_2}{f_1}$

Bunch Shortening VSR

60

40

20

0

-20

-40

-60

20

 $V(\mathrm{MV})$

0

-0.05

-4000

-2000

0 $\tau(ps)$

 \sim

14

4000

4000

2000

For SC case,

For NC case,

Туре	m_1	<i>m</i> ₂	BLF (Long)	BLF (Short)	
Long Bunch VSR	2.5	3	6.5	0.44	
Short Bunch VSR	3	3.5	1	SC	0.17
				NC	0.30

