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Brief Introduction to Scandium-45 32 124 keV

A To~~470 ms —
45Sc nuclei exhibit an extraordinary narrowband 1C > 99%

,="h/7, = 1.4 x 10715 eV (0.33 Hz)
x-ray resonance transition with energy LQ';KK;

E ~ 12.4 keV
and with exceptionally large quality factor

_ ~ 7/2 0.0
Qo - E/FO ~ 10". . 45 - tabl
215C24 stable
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Brief Introduction to Scandium-45

45Sc nuclei exhibit an extraordinary narrowband
,="h/7, = 1.4 x 10715 eV (0.33 Hz)
x-ray resonance transition with energy
E ~ 12.4 keV
and with exceptionally large quality factor
Q,= E/T, ~ 10%.

Q, > Q ~ 10'° of atomic clocks
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Brief Introduction to Scandium-45

45Sc nuclei exhibit an extraordinary narrowband

. 15 :
T, = h/7, = 1.4 x 10~ eV (0.33 Hz) Q, > Q ~ 10" of atomic clocks
x-ray resonance transition with energy
E ~ 12.4 keV
and with exceptionally large quality factor mlmm "“mm "“mm
_ ~ 1019
@ = B/T, =107 _ % nmn

Despite its extremely sharp spectral profile, it has become
possible to drive and study the x-ray quantum transition in 43Sc

using x-ray sources with the highest spectral brightness—x-ray
free-electron lasers (XFELs).
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Brief Introduction to Scandium-45

45Sc nuclei exhibit an extraordinary narrowband

. 15 :
T, = h/7, = 1.4 x 10~ eV (0.33 Hz) Q, > Q ~ 10" of atomic clocks
x-ray resonance transition with energy
E ~ 12.4 keV
and with exceptionally large quality factor mlmm "“mm "“mm
_ ~ 1019
@ = B/T, =107 _ % nmn

Despite its extremely sharp spectral profile, it has become
possible to drive and study the x-ray quantum transition in 43Sc
using x-ray sources with the highest spectral brightness—x-ray
free-electron lasers (XFELs).

Yu. Shvyd’ko, R. Rohisberger, O. Kocharovskaya, J. Evers, et al. Nature 622 (2023) 471
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This advancement opens up new opportunities for exquisite ncdence energy E - By (¢ !
applications of 4°Sc, such as: nuclear frequency standard,
nuclear clocks, extreme x-ray metrology, ultra-high-resolution
spectroscopy, etc.
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Content

e Atomic and nuclear frequency standards.
e %°Sc as a nuclear frequency standard.

e X-ray free-electron lasers (XFELs).

e Resonant x-ray excitation and experimental studies of the °Sc resonance.

e Summary.
Article Nature | Vol 622 | 19 October 2023 | 47T
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Frequency Standards Enable Time Measurements

Oscillators with stable frequencies and large quality factors — frequency standards — determine our
ability to keep track of time. Atomic clocks are presently our most precise measurement devices.

They define the second; enable GPS; test fundamental principles of physics with highest precision ...
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Frequency Standards Enable Time Measurements

Oscillators with stable frequencies and large quality factors — frequency standards — determine our
ability to keep track of time. Atomic clocks are presently our most precise measurement devices.

Search for more accurate, stable, and convenient reference oscillators is ongoing.
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Nuclear vs. Atomic Resonances

. Energy width T (eV)
1. Higher Q-factors. QQ = E/F 10°% 1010 10718 102 10

T v T T

2. Higher frequency: a higher-frequency transition 15 _

i ) o @=10 » Nuclear isomers
offers greater stability for simple statistical reasons 1q7ie Atomic shell
(fluctuations are averaged over more cycles). transitions

ono C c Optical clock
3. Insensitivity to environmental effects. Due 108 F re';ion
to its small size, small magnetic moments, and the
shielding effect of the surrounding electrons, an atomic = 10°r . i
nucleus is much less sensitive to ambient electromag- %
. . . . S 101 .
netic fields than is an electron in an orbital. o
c
4. Macroscopic number of atoms can be used, " i )
because of the insensitivity to ambient fields, it is not 1, H
. 199 235m
necessary to have the clock atoms well-separated in a 102 g 400";? B
dilute gas or in ion traps a very low temperatures. 4, 2TAl+ 229mTh
o . 1 q 1L 5, 17Yb ¢ 4
5. Méossbauer effect with nuclei in solids would 1001 & erg, 24 mm 3
. c e + &5
allow solid-state amount of nuclei to exhibit narrow spec- 7, 77Ybr o\ *e6 |\ . . “
tral resonance line at moderately-low temperatures. 10710 10°° 100 10° 110 1015 1020
adopted from .
van der Wese et al. Nature 533 (2016) 637 Half-life (s)

E Peik, et al.” Nuclear clocks for testing fundamental physics”
Quantum Sci. Technol. 6 (2021) 034002
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Nuclear Clock Isomer %2*Th LC*"Th) 1018 eV (0.24 mHz)

A lot of effort was dedicated to studies of the Energy width I" (eV)

-05 -10 -15 -20 -25
229mTh isomer and measurements of the nu- L1t = L L

L] - 15 .
clear transition energy: 8.338(24) eV [*]. Q=10 Nuclear isomers
L. van der Wese et al. Nature 533 (2016) 637 107 f‘tom.itc.: shell
“Direct detection of the 22°Th nuclear clock transition” (;an_SI Ilonls «
Seiferle, B. et al. Nature 573, 243 (2019) 106 | reg?(;? cloc
Energy of the 22 Th nuclear clock transition.
[¥] Kraemer, S. et al. Nature 617, 706 (2023) 105 F ]
Observation of the radiative decay of the 22 Th nuclear clock isomer. %‘ @ ¢
Resonant laser excitation of 22Th in a solid- 3 10¢F .
. o}
state host was recently achieved: 5
J. Tiedau, E. Peik et al. Phys. Rev. Lett. 132 (2024) 182501 10°F 1 i
R. Elwell, E. Hudson et al. Phys. Rev. Lett. 133 (2024) 013201 , ;’ 1gHgHg 235m|
10T 5 s004 o
. . . 3, *Ca
A frequency ratio of the 22" Th nuclear isomeric 4, 27Al 229y,
- . . 171
transition and the ®’Sr atomic clock transitions  10'F > " 2 4 mmm i
o c 5 _ ’ s i/
was established using a VUV comb with a 10713 7, 171Yb* 3.5
relative uncertainty. C. Zhang, J. Ye et al. Nature, 633 (2024 10-10 10-5 100 105 1010 1015 1020
1 . dopted f .
Resonance width: I' ~ 25 kHz. van der Wese et al. Nature 533 (2016) 637 Half-life (s)
T. Ooi, J Ye (2025) arXiv:2507.01180 229m
7! ) = 640 s
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Other Candidates for Nuclear Clocks

Energy width " (eV)

Most of the nuclear isomers (with sta- 10% 10" 10" 10 10
ble ground states) have the excita- SPNRRTEE ' ' ' :

. 67 109 Q=10 . e Nuclear isomers
tion energy above 30 keV (°'Zn, '*’Ag, ok O Atomic shel
119Rh) and therefore cannot be driven ¥ transitions
by the modern coherent sources of elec- Josk gztiijcr?' clock
tromagnetic radiation. " E

10} s 3 >
b 229 : 3 o’
Fortunately, along with ““*™Th there is .
. 4l -
another notable exception — #5Sc. 2 10 i
D
108 .
o 235
2, 199H my
102 3, 40(3519r §
4, 2TAI* 229MTh
1 5, 171Yb |
101 o 87y 2 4 mEm L
7, 171Yp+ = 6 o
10710 105 100 105 100 10 1020
dopted f .
van der Wes ot al. Nature 533 (2016) 637 Half-life (s)
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12.4-keV Nuclear Resonance of 4°Sc

. 3/2" 12.4 keV
Basic Features T o
Excitation energy: F = 12.40 + 0.05 keV, [1,2,3,6] IC > 999%
excited state lifetime: 7 = 0.47 s, [1,5,6] \
natural energy width: T, = /7 = 1.4 X 10~ '° eV=1.4 feV & KK,
(0.33 Hz), sz
resonance quality: Q = E/T, ~ 10%?,
internal conversion coefficient: o ~ 630, [4,5,6] 7/2° 0.0
45Sc natural abundance: 100%, o stable

gravitational red shift: 1 mm/T,

room temperature Lamb-Maossbauer factor: fiy ~ 0.8.

[1] Holland R.E., Lynch F.J., Nystén K.E., PRL 13 (1964) 241-243.

[2] Freedman, M. S., Porter, F. T. & Wagner F.Jr, Phys. Rev. 140, B563-B565 (1965).

[3] Porter, F. T., Freedman, M. S., Wagner F., & Orlandini, K. A., Phys. Rev. 146, 774-780 (1966).
[4] Jones, K. W. and Schwarzschild, Phys. Rev. 148, 1148-1150 (1966).

[5] Blaugrund, A. E., Holland, R. E. & Lynch, F. J., Phys. Rev. 159, 926-930 (1967).

[6] Burrows, T. W., Nuclear Data Sheets 109, 171-296 (2008).
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12.4-keV Nuclear Resonance of 4°Sc T A 124 keV

. . . T9~470 ms
History in Brief :
Y%% '
Excitation energy: E = 12.40 £ 0.05 keV,
excited state lifetime: 7 = 0.47 s, e, K, K;
natural energy width: I') = h/7 = 1.4 feV, le
resonance quality: Q@ = E/T, ~ 10",
7/2 0.0
stable

45
215Co4

e A 13-keV gamma-emitting state of 0.44-sec mean lifetime was found in 4°Sc by (p, p’) reaction on
45Sc at Argonne National Laboratory in 1964. FXAGNE A A T NN D P RYE
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12.4-keV Nuclear Resonance of #°Sc 3

History in Brief

Excitation energy: E = 12.40 £ 0.05 keV,
excited state lifetime: 7 = 0.47 s,

natural energy width: I') = h/7 = 1.4 feV,
resonance quality: Q@ = E/T, ~ 10",

12.4 keV

7/2

To~470 ms

V 99% '
Lf; Ko Kg

0.0

45
215Co4

stable

e A 13-keV gamma-emitting state of 0.44-sec mean lifetime was found in 4°Sc by (p, p’) reaction on

45Sc at Argonne National Laboratory in 1964. FXAGNE A A T NN D P RYE

e Unfortunately, “°Sc does not have any convenient parent radioactive source.
This prevented performing classical Mossbauer-type nuclear-resonance measurements.

Source Absorber Detector
(e.g. ¥’Co/Rh) (*’Fe-comp.)

Courtesy of P. Giitlich

Nuclera clock isomer °Sc & XFELs

Rel. Transmission

Mossbauer Spectrum

1
-V 0 +v
Doppler-Velocity
Oct 17, 2025

foil 10/27
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12.4-keV Nuclear Resonance of 4°Sc 3/2° 124 keV

. . . B T9~470 ms
History in Brief :
Y%% '
Excitation energy: E = 12.40 £ 0.05 keV,
excited state lifetime: 7 = 0.47 s, e, K, K;
natural energy width: I') = h/7 = 1.4 feV, le
resonance quality: Q = E/T, ~ 10"°.
7/2 0.0
stable

45

215C24
e A 13-keV gamma-emitting state of 0.44-sec mean lifetime was found in 4°Sc by (p, p’) reaction on
45Sc at Argonne National Laboratory in 1964. CEEGNE AR LA N EN DRI YR

e Unfortunately, °Sc does not have any convenient parent radioactive source.
This prevented performing classical Mossbauer-type nuclear-resonance measurements.

e %°Sc was rediscovered and resurrected in 1990:

(1) resonant excitation of “°Sc is feasible using 12.4-keV x-rays from accelerator-based x-ray sources
of high spectral brightness and flux, which started to emerge in 1990s (ESRF, APS, SPring-8);

(2) spectral width of the long-lived state can be accessed by measuring time dependence of coherent

nuclear-resonant forward scattering (NFS) KBRS GG KA A G G IS NG E LI W EP R TR,
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12.4-keV Nuclear Resonance of 4°Sc 3/2° 124 keV

. . . B T9~470 ms
History in Brief :
Y%% '
Excitation energy: E = 12.40 £ 0.05 keV,
excited state lifetime: 7 = 0.47 s, e, K, K;
natural energy width: I') = h/7 = 1.4 feV, le
resonance quality: Q@ = E/T, ~ 10",
7/2 0.0
ﬁSszL stable

e A 13-keV gamma-emitting state of 0.44-sec mean lifetime was found in 4°Sc by (p, p’) reaction on
45Sc at Argonne National Laboratory in 1964. CEEGNE AR LA N EN DRI YR

e Unfortunately, °Sc does not have any convenient parent radioactive source.

This prevented performing classical Mossbauer-type nuclear-resonance measurements.

e %°Sc was rediscovered and resurrected in 1990:

(1) resonant excitation of “°Sc is feasible using 12.4-keV x-rays from accelerator-based x-ray sources
of high spectral brightness and flux, which started to emerge in 1990s (ESRF, APS, SPring-8);

(2) spectral width of the long-lived state can be accessed by measuring time dependence of coherent

nuclear-resonant forward scattering (NFS) KBRS GG KA A G G IS NG E LI W EP R TR,

e Attempts to detect the *°Sc resonance at 3rd-generation synchrotron radiation sources (ESRF, APS,

SPring-8) were so far unsuccessful. Spectral flux was still low.
Nuclera clock isomer 4Sc & XFELs Oct 17, 2025 foil 10/27



History of Hard X-ray Spectral Brightness
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e Simultaneously, there
was a remarkable progress
with XFELs in the past two
decades.
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History of Hard X-ray Spectral Brightness

10%— seeded XFELs
(high rep.-rate)
N u
N 1026_
m -
g 107
e SASE XFELs -~ HllE===5 p=—
50 x|
.z %;10 _— /
F—D4 § 10°— undulator _ g )
@© = - (APS)
B 10
O B
L
Q. 10
»n:
© 12_ bending -
E-)* 107 = magnet é‘@
% 10" X-ray tubeJ
W —
! | | I | | |
1900 20 40 ’60 80 2000 20 "40

Nuclera clock

Year

isomer 45Sc & XFELs

e Simultaneously, there
was a remarkable progress
with XFELs in the past two
decades.

LINAC-driven
x-ray FELs

° The most advanced
hard XFELs — self-seeded
(HXRSS) high-repetition-
rate (HRR) XFELs — may
provide average spec-
tral flux >1000 than
ESRF, APS, SPring-8,
or PETRA-IIl undulators.

O. Chubar et al., JSR 23 (2016) 410

Storage-ring-driven
X-Tay sources

X-ray tubes
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History of Hard X-ray Spectral Brightness
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e Simultaneously, there
was a remarkable progress
with XFELs in the past two
decades.

LINAC-driven
x-ray FELs

° The most advanced
hard XFELs — self-seeded
(HXRSS) high-repetition-
rate (HRR) XFELs — may
provide average spec-
tral flux >1000 than
ESRF, APS, SPring-8,
or PETRA-IIl undulators.

O. Chubar et al., JSR 23 (2016) 410

Storage-ring-driven
X-Tay sources

X-ray tubes e HXRSS HRR XFELs may
provide sufficient spectral
flux to drive %°Sc reso-
nance.
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45Sc Experiment at European XFEL (Hamburg, Germany)

e European XFEL is the 1st high rep.-rate XFEL 800 -
W. Decking, et al. Nat. Photonics, 14 (2020) 391§

700 -
— pubeenmgyzaﬁnw;:&Smev
e An average spectral flux at 13 keV of up to ~ 3 ] spectral flux ~10 f';’z’fr" *s0)
_— ~ 0

10 ph/s/eV ~ 1 ph/T'((*°Sc) was demonstrated in self- 2 s
T S MG (W S. Liu et al. Nature Photonics 17 (2023) 984 §

SASE:
pulse energy ~2 mdJ; ~0.1 mJ/eV

100
01 r»rJL-A 4/4/J\\\\“‘*“-———-T

p875 12900 12925 12950 12975 13000 13025 13050
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45Sc Experiment at European XFEL (Hamburg, Germany)

e European XFEL is the 1st high rep.-rate XFEL 800 -
W. Decking, et al. Nat. Photonics, 14 (2020) 391§

— pulse energy ~0. 8 mJ, ~0.8 mJ/eV

e An average spectral flux at 13 keV of up to ~ 3 ] Spectfa'f'““‘ONf';/z/fFV( s
10'® ph/s/eV ~ 1 ph/T'((*°Sc) was demonstrated in self- 250 °

T S MG (W S. Liu et al. Nature Photonics 17 (2023) 984 §

e European XFEL has a unique time structure suitable

SASE:
perfectly for the detection of the *°Sc resonance: sub-ms

, pulse energy ~2 mdJ; ~0.1 mJ/eV

pulse trains with a 100-ms dark time. 1004
04 ﬁyjtmqﬁHA ‘,/(/’hk\\‘\-‘,_~________r

12900 12925 12950 12975 13000 13025 13050
Photon energy [eV]

Spec. density
w
o
o

'Traln

4
2700 pulses
220ns
<100fs
Pulses
0.1s

10 Hz

oo
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45Sc Experiment in a Nutshell:
Highest Spectral Flux — Lowest Detector Background

3/2" 12.4 keV
A To~470 ms

Y 99%

—-K, 3 ~4 keV —=NFS5=12.4 keV
e, K, K;
LI% -
7/2 0.0
45 stable
100 ms 21562

12.4-keV X-rays I
Tram
Illll mn A 2.
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45Sc Experiment in a Nutshell:

Highest Spectral Flux — Lowest Detector Background

With a 25-pum thick Sc metal target exposed to an x-ray beam

3/2" 12.4 keV
with ~ 1 ph/s/T', >~ 10'® ph/s/eV, the expected count-rate in 70~470 ms
D; or D, of 4-keV K, s-fluorescence is 1-5 ph/100 s.

V%%
~K, 34 keV —NFS=12.4 keV
)\»f;Km K,}
\
I % 7/2 0.0
1 O O ms 2515 Cos stable
12.4-keV X-rays I
Tram
e zzons Sc Detection of the nuclear decay products with
o time, spatial, energy, and polarization discrim-
p.ses ination ensures very low detector noise floor
<2 counts/10000 s.

10 Hz

Nuclera clock isomer 4°Sc & XFELs Oct 17, 2025

foil 12/27



Experimental Setup and Experiment Execution (2022)

— K ﬁ_4keV —> NFS
Pl J IR
) b
< > €<—>
100 ms 0.2ms
’ =1.4eV 100 ms
AN / | mmmmm

INENER DERNEEEN | 24tV

X-rays Sc

o
Self-seeded XFEL with #Sc resonance Single-shot Bond
wake monochromator detection unit spectrometer spectrometer
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455¢c Resonance Detected - 2D Picture

a ]
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Incidence energy E; — Eg [eV]

(a) Counts from the D, and D4 x-ray de-
tectors plotted as the energy Er of the de-
tected X-ray photons versus incident X-ray
photon energy E; — E,. The photons were
recorded in a time window of ~20-80 ms

after every pulse-train excitation.
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e XFEL photon energy E; was scanned in
a + 50 eV range around 12.4 keV.

e ~ 10%° of 12.4-keV photons were di-
rected to Sc targets.
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455¢c Resonance Detected - 2D Picture
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(b) 48 e XFEL photon energy E; was scanned in
a + 50 eV range around 12.4 keV.
4.6 - ) e ~ 10%° of 12.4-keV photons were di-
—_— rected to Sc targets.
% 4.4 1
N g s $ e ~93 of 4-keV K, s-fluorescence photons
— g;@ were detected with a >20-ms delay.
4.0 1 ¢ e Signal to noise ratio ~ 70.
3.8 T T T
40.0 -5.0 0.0 5.0
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(a) Counts from the D, and D4 x-ray de-
tectors plotted as the energy E: of the de-
tected X-ray photons versus incident X-ray
photon energy E; — E,. The photons were
recorded in a time window of ~20-80 ms

after every pulse-train excitation.

Nuclera clock isomer 4°Sc & XFELs

(b) Close-up of the 4.3-keV ROI,
showing two clusters of counts cen-
tered at the energies of Sc K,
(4.09 keV) and Kj (4.46 keV) flu-
orescence as a direct confirmation
of detection of the *3Sc resonance.
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4°Sc Resonance Detected & Resonance Energy Determined

< b (06/02) eV £ The **Sc nuclear resonance transition
<L (06/-0.2) e N energy E_ previously known to an un-
7 60 (06/0.2) eV 0.4 x ’
0 ‘ 0.8 62 v ) certainty of ~ +50 eV, was determined
Q ‘ (08/-0. )i/ — with more than a hundred times higher
® 0 (0.8/0.2) eV 1 0.3 ¢ accuracy as
= 1.32(12) eV . 40.15(stat)
= . L:32(12) L3 E, = 12,389.5970 120" ev
< > using Bond technique.
g 20 :
Té - 0.1 <
o | o
2 0 1L es4 4—l—+—l—l +0.0 S
I I I L
—4 —2 0 2 4

Incidence energy F; — Ey (eV)

Time-delayed 4°Sc K-shell fluorescence as a function of incom-
ing X-ray photon energy E; relative to resonance energy E.

The spectral width of 1.32(12) eV reflects the spectral width of the incoming XFEL
radiation. The colored dots are exemplary binned data.
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Incoherent Fluorescence of #°Sc vs.

Re-emitted Photon Energy E' & Delay Time ¢ (2024)

e %Sc fluorescence is detected with x-ray detectors D, and D, as a function of re-emitted photon
energy E£ and photon delay time ¢ after pulse excitation.

e Background (D,+D4): 1.8 counts/keV /10000 s.

e Total data acquisition time: 24.9 hours.

RS g
X ray pu se C resonance —
sequence d t t 't =
q m“m m““L etection uni %
= 100ms  02ms 124keV (2K, 4keV
PN 24 b
vd S =
. 1 =
Jerev
_Eman éﬁ . I
nnn \¢ " - i i idi
Self-seeded XFEL with - Single-shot 2 4 6 8 10 12 14 16
wake monochromatr e spectrometer o Photon energy E [keV]
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Incoherent Fluorescence of #°Sc vs. Photon Energy E

Countrates in detectors D 4D, [delay time integration: 15-100 ms, energy integration: 1 keV].
e Delayed 4-keV (K ;) photons: R,=328(6) ph/10000 s —SNR=183 (SNR=65 in 2022)
e Delayed 12.4-keV photons: R;,=10(1) ph/10000 s —=SNR=5
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Internal Conversion Coefficient o, for Isomer #°Sc.

Measured fluorescence countrates of K_ ; vs. 12.4-keV allows us to determine o, =350(65).
It agrees with o’ =363 predicted by the state-of-the-art theory
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Incoherent Fluorescence of #°Sc vs. Time Delay ¢

e Photon energy integration: 3.75 keV - 4.75 keV.

e Fit to «x exp(—t/7) in a ~(30 — 80 ms) range is sensitive to: start/end and # of bins.
e Best fit: 7=460(250) ms.

e Agrees with 7=470(6) ms

Photon counts

60

o Ot
O O
I !

Blaugrund, A. E., et al., Phys. Rev. 159, 926 (1967).

— (\W) o
- - o -
| ! ! !

(d)

|rlr[| I“rll-

0 20 40 60 80 100
Time delay ¢ [ms]
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Incoherent Fluorescence of #°Sc vs. Time Delay ¢

Photon counts

v

This confirms the ultra-narrow

natural resonance width
', =h/T ~ 1.4 feV of **Sc.

But, it is not yet the

solid-state nuclear reso-
nance width I' =T') + AT

Photon energy integration: 3.75 keV - 4.75 keV.
Fit to < exp(—t/7) in a ~(30 — 80 ms) range is sensitive to: start/end and # of bins.
Best fit: 7=460(250) ms.
Agrees with 7=470(6) ms (via Coulomb excitation)
60 | | |
_ _ g (d)
50 I R N e
40 - _ ] __ ~ i Sl ___‘ g - ol .
30 - I A st A AR TR AT
I o< exp(—t/7) HHHN 1
20 | _ p(—t/T) _
10 - :
BN Sc-foil motion artifact
0 | |II!IIIIII|IIII||IIIIII!||I |
0 20 40 60 80 100
Time delay ¢ [ms]
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45Sc Nuclear Forward Scattering to
Determine the Solid-State Resonance Width

e We do not know the actual width ' = I' | + AT of the *°Sc
resonance in a solid state target, and how much is it broadened
— AT — compared to the natural linewidth I' =1.4 feV?

e Measuring I' ~ feV directly is a formidable challenge.

Nuclera clock isomer 4°Sc & XFELs Oct 17, 2025
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45Sc Nuclear Forward Scattering to
Determine the Solid-State Resonance Width incoherent

scattering ()

e We do not know the actual width ' = I' | + AT of the *°Sc \ /

resonance in a solid state target, and how much is it broadened
— AI' — compared to the natural linewidth I' =1.4 feV?

e Measuring I' ~ feV directly is a formidable challenge. J : coherent

° Measuring complementary time dependences on the NFS

millisecond-scale instead of energy dependences on the feV-scale

is @ more straightforward approach.

e It requires measuring time dependence of coherent nuclear

forward scattering (NFS) to access I'.

Yu. Shvyd’ko and G.V. Smirnov NIM 51 (1990) 452-457
— Aexp(—Tt)
— Bexp(—TI1)

time t [1/Ty] (%)
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Nuclear Forward Scattering (NFS) Set-up

e NFS crystal targets (Sc, Sc,0,, ScN, and ScAIMgO,) are in a cryostat at 40 K.

Each target is placed into the beam sequentially and raster—scanned to reduce radiation damage.
e Two synchronized shutters #1 & #2 open NFS path
from the target to the NFS detector 2 ms after the excitation.
e The resonance detection unit is always on:
to confirm that the XFEL is on resonance.

@ @
I
sequence m‘“n

<+

<+
100 ms 0.2 ms

45
Sc resonance
detection unit

124keV (2)K, ;~4 keV

Ml

cryostat

ScI I

~::::::\2%/:::::::: : .

Self-seeded XFEL w1th - Smgle -shot NFS unit .u .H
wake monochromatr e spectrorneter
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45Sc NFS Targets (only crystal samples are used)

Selection criteria: minimal magnetic and electric interactions; high density of Sc; low density and photo-absorption
of ballast elements; high thermal conductivity; chemical purity and stoichiometry; crystal perfection, etc.

substance Sc ScN Sc,0, ScAIMgO, | ScF3
(not used)

space group P63/mmc| Fm3m Ia3 R3m Pm3m

(194) hcp | (225) NaCl | (206) (166) [? ] 1 (221) [? 7 ]
magnetism paramag. | diamag. diamag. diamag. diamag.
Quadrupole interaction parameters
eQ,V._./h [MHZ] ~ 2 [7] 0[? 7] 15.5-24.4 ? 0
n 07 0 0.69-01[7?71]|7? 0
density [g/cm?] 2.985 4.28 3.86 3.64 2.57
Photo-absorption length L, [pum] 60 54.5 69.7 133 146
Sc number dens. N, x10%** [1/cm?] 3.98 4.37 3.18 0.88 1.54
Optimized optical thickness 9.06 9.04 8.42 4.45 8.57
L = o0xN,2L,
Optimized £ = L _,/4 2.26 2.26 2.10 1.11 2.14
Thermal conductivity @300 K [W/m K] || 15.8 51-56 [? ] |17.3 4 7 ] 9.6 [7 ]
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45Sc Nuclear Forward Scattering (NFS) - Expected Results

e R(t): NFS rate as function of time delay after resonant excitation with ultra-short x-ray pulse.

e R(t) is calculated for

— a single resonance for different values of inhomogenious resonance broadening I' = I' | 4 AT’
— a NFS target with nuclear resonance optical thickness parameter £ = 2 (as in the experiment)
— Incident spectral flux: 1 ph/T’ /pulse.

Nuclera clock isomer 4°Sc & XFELs
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45Sc Nuclear Forward Scattering (NFS) - Expected Results

e R(t): NFS rate as function of time delay after resonant excitation with ultra-short x-ray pulse.

e R(t) is calculated for

— a single resonance for different values of inhomogenious resonance broadening I' = I' | 4 AT’
— a NFS target with nuclear resonance optical thickness parameter £ = 2 (as in the experiment)
— Incident spectral flux: 1 ph/T’ /pulse.

e With a minimum measurable
delay time of 2 ms, NFS can be
detected if AI' < 500T,.
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45Sc Nuclear Forward Scattering (NFS) - First Results

o Delayed “’Sc K_ , fluorescence countrate ~300 ph/10000 s: XFEL is on **Sc resonance.

o 12.4-keV leaking through the shutter blade are detected by D .
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45Sc Nuclear Forward Scattering (NFS) - First Results

o Delayed “’Sc K_ , fluorescence countrate ~300 ph/10000 s: XFEL is on **Sc resonance.

o 12.4-keV

leaking through the shutter blade are detected by D

NFS*®

e Delayed photons are very rare ~2 ph/10000 s, homogeneously distributed in time, and have

wrong energy.

e NFS signal obviously decays faster than the smallest measurable delay time of 2 ms meaning

that T' > 500T, .
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v

Why I' > 500 I', and How this Could be Improved?

Why?
e Magnetic dipole-dipole interaction p, < p, results in a maximum energy shift of
U,.x =2u.p1,/R*~ 1500 (3000) T'; or 500 (1000) Hz
for *Sc in Sc,0, (ScN)
e Unhomogeneous broadening due to distribution of HFl parameters in imperfect NFS crystals.

e Heatload induce further crystal imperfections.

How?

e NFS crystal targets of highest crystallinity and chemiocal purity characterized with NMR,
X-rays, EDS etc.

e Milder excitation conditions.
e Dynamic resonance narrowing, etc. ....
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45Sc Mossbauer Nuclear Clock and XFELO

Realization of the 4°Sc Maossbauer nuclear clock will require
(1) a further increase of the resonant spectral flux

using improved narrow-band 12.4-keV X-ray sources and
(2) frequency combs stretching up to this energy.
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45Sc Mossbauer Nuclear Clock and XFELO

e X-ray free-electron-laser oscillator (XFELO) [1] and
hard X-ray comb generated by a nuclear-resonance-stabilized XFELO [2].

[1] K.-J. Kim, Yu. Shvyd’ko, S. Reiche PRL 100, 244802 (2008)

[2] B. Adams and K.-J. Kim PRAB 18, 030711 (2015)

. AL

undulator x-ray pulse sequence
v RERERENIN RN RERER oL
W ~ 0y ANERERERERERERERENAN ad “
D CRL2 CRLl A 458
c
=

Al — 0. M %m

x-ray comb
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45Sc Mossbauer Nuclear Clock and XFELO

e X-ray free-electron-laser oscillator (XFELO) [1] and
hard X-ray comb generated by a nuclear-resonance-stabilized XFELO [2].

[1] K.-J. Kim, Yu. Shvyd’ko S. Reiche PRL 100, 244802 (2008)

—

undulator x-ray pulse sequence
W — e NENERERERERERERENENE “
O IRERERENENENENERERER O
CRL, CRL, A g
C
e R&D on the realization of such ~ P

devices is presently in progress at
ANL/SLAC (USA) [3], at EuXFEL M M
(Germany) [4], and is considered at % — W

SHINE (China) [5]. B C

x-ray comb

[3] G. Marcus et al., (2019) https://doi.org/10.18429/JACoW- FEL2019-TUDO04
CIIAGETER A W o Y. T (VM PPE)] -+ recent demonstration (2025)
[5] N.-S. Huang et al., Nuclear Science and Techniques (2023) 34:6
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Summary and Outlook

e The nuclear transition in *°Sc was resonantly excited from the ground to the long-lived
12.4-keV excited state by x-rays for the first time.
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Summary and Outlook

e The nuclear transition in *°Sc was resonantly excited from the ground to the long-lived
12.4-keV excited state by x-rays for the first time.

e Successful resonant excitation of the *°Sc resonance opens up new horizons for ultra-high
precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state
45Sc nuclear frequency standard (Méssbauer nuclear clock).
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Summary and Outlook

e The nuclear transition in *°Sc was resonantly excited from the ground to the long-lived
12.4-keV excited state by x-rays for the first time.

e Successful resonant excitation of the *°Sc resonance opens up new horizons for ultra-high
precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state
45Sc nuclear frequency standard (Méssbauer nuclear clock).

e High repetition-rate, narrow-band XFELs is an ideal platform to drive and study long-lived
nuclear resonances at energies of hard X-rays.
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Summary and Outlook

e The nuclear transition in *°Sc was resonantly excited from the ground to the long-lived
12.4-keV excited state by x-rays for the first time.

e Successful resonant excitation of the *°Sc resonance opens up new horizons for ultra-high
precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state
45Sc nuclear frequency standard (Méssbauer nuclear clock).

e High repetition-rate, narrow-band XFELs is an ideal platform to drive and study long-lived
nuclear resonances at energies of hard X-rays.

e The following “°Sc resonance parameters were measured in the experiments:
— resonance energy E, :12,389.59i8jg§:;23 V
— internal conversion coefficient oo, = 350(60)

— decay time constant 7, = 480(250) ms
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Summary and Outlook

e The nuclear transition in *°Sc was resonantly excited from the ground to the long-lived
12.4-keV excited state by x-rays for the first time.

e Successful resonant excitation of the *°Sc resonance opens up new horizons for ultra-high
precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state
45Sc nuclear frequency standard (Méssbauer nuclear clock).

e High repetition-rate, narrow-band XFELs is an ideal platform to drive and study long-lived
nuclear resonances at energies of hard X-rays.

e The following “°Sc resonance parameters were measured in the experiments:
— resonance energy E, :12,389.59i8jg§:;23 V
— internal conversion coefficient oo, = 350(60)

— decay time constant 7, = 480(250) ms

e No NFS signal was observed indicating that the solid state “°Sc resonance I' was broadened
at least by 500 I',. Observation of NFS is the primary current goal.
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Summary and Outlook

e The nuclear transition in *°Sc was resonantly excited from the ground to the long-lived
12.4-keV excited state by x-rays for the first time.

e Successful resonant excitation of the *°Sc resonance opens up new horizons for ultra-high
precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state
45Sc nuclear frequency standard (Méssbauer nuclear clock).

e High repetition-rate, narrow-band XFELs is an ideal platform to drive and study long-lived
nuclear resonances at energies of hard X-rays.

e The following “°Sc resonance parameters were measured in the experiments:
— resonance energy E, :12,389.59i8jg§:;23 V
— internal conversion coefficient oo, = 350(60)

— decay time constant 7, = 480(250) ms

e No NFS signal was observed indicating that the solid state “°Sc resonance I' was broadened
at least by 500 I',. Observation of NFS is the primary current goal.

e Progress with the seeded XFELs and XFELOs is essential for the realization of the %°Sc
Mossbauer nuclear clock.
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