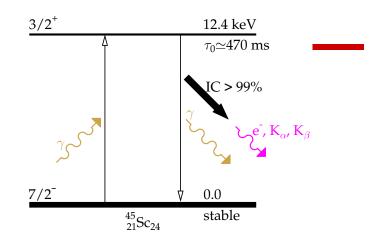


Nuclear Clock Isomer Scandium-45 driven by X-ray Free-Electron Lasers (XFEL)

Yuri Shvyd'ko

45Sc nuclei exhibit an extraordinary narrowband


$$\Gamma_{_0}=\hbar/ au_{_0}=1.4 imes 10^{-15}~{
m eV}$$
 (0.33 Hz)

x-ray resonance transition with energy

$$E \simeq 12.4 \text{ keV}$$

and with exceptionally large quality factor

$$Q_0 = E/\Gamma_0 \simeq 10^{19}$$
.

 45 Sc nuclei exhibit an extraordinary narrowband $\Gamma_0=\hbar/\tau_0=1.4\times 10^{-15}~{\rm eV}~(0.33~{\rm Hz})$ x-ray resonance transition with energy

$$E \simeq 12.4 \text{ keV}$$

and with exceptionally large quality factor

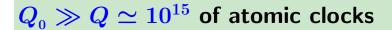
$$Q_{\scriptscriptstyle 0} = E/\Gamma_{\scriptscriptstyle 0} \simeq 10^{19}$$
 .

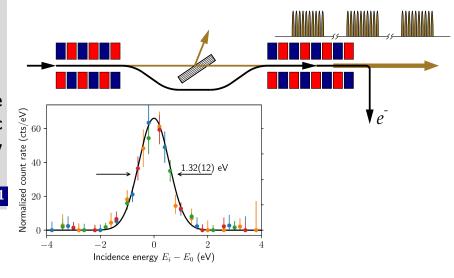
$$Q_0 \gg Q \simeq 10^{15}$$
 of atomic clocks

• ⁴⁵Sc nuclei exhibit an extraordinary narrowband

$$\Gamma_0 = \hbar/\tau_0 = 1.4 \times 10^{-15} \text{ eV (0.33 Hz)}$$

x-ray resonance transition with energy


$$E \simeq 12.4 \; \text{keV}$$


and with exceptionally large quality factor

$$Q_0 = E/\Gamma_0 \simeq 10^{19}$$
.

• Despite its extremely sharp spectral profile, it has become possible to drive and study the x-ray quantum transition in ⁴⁵Sc using x-ray sources with the highest spectral brightness—x-ray free-electron lasers (XFELs).

Yu. Shvyd'ko, R. Röhlsberger, O. Kocharovskaya, J. Evers, et al. Nature 622 (2023) 471

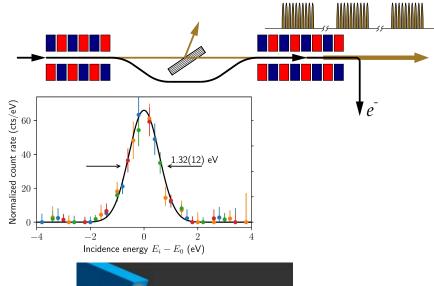
• ⁴⁵Sc nuclei exhibit an extraordinary narrowband

$$\Gamma_0 = \hbar/\tau_0 = 1.4 \times 10^{-15} \text{ eV (0.33 Hz)}$$

x-ray resonance transition with energy

$$E \simeq 12.4 \; \text{keV}$$

and with exceptionally large quality factor


$$Q_0 = E/\Gamma_0 \simeq 10^{19}$$
.

• Despite its extremely sharp spectral profile, it has become possible to drive and study the x-ray quantum transition in ⁴⁵Sc using x-ray sources with the highest spectral brightness—x-ray free-electron lasers (XFELs).

Yu. Shvyd'ko, R. Röhlsberger, O. Kocharovskaya, J. Evers, et al. Nature $622\ (2023)\ 471$

• This advancement opens up new opportunities for exquisite applications of 45 Sc, such as: nuclear frequency standard, nuclear clocks, extreme x-ray metrology, ultra-high-resolution spectroscopy, etc.

Content

- Atomic and nuclear frequency standards.
- 45Sc as a nuclear frequency standard.
- X-ray free-electron lasers (XFELs).
- Resonant x-ray excitation and experimental studies of the 45 Sc resonance.
- Summary.

⁴⁵Sc Collaboration - 2022

Argonne National Laboratory

Peifan Liu Antonino Miceli Deming Shu Brandon Stone Yuri Shvyd'ko

Texas A&M University

Olga Kocharovskaya Xiwen Zhang

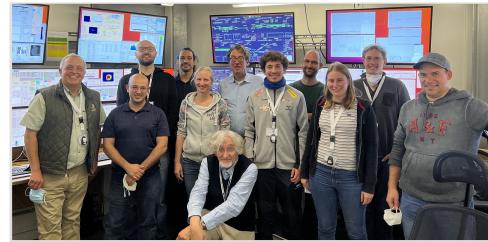
European XFEL

Alexey Zozulya
Jörg Halmann
Ulrike Boesenberg
Wonhyuk Jo
Johannes Möller
Angel Rodriguez-Fernandez
Mohamed Youssef
Naresh Kujala
Gianluca Aldo Geloni
Anders Madsen

Helmholtz Institute Jena & University of Jena

Ralf Röhlsberger Willi Hippler Berit Marx-Glowna Ingo Uschmann Robert Loetzsch

MPIK, Heidelberg


Jörg Evers Miriam Gerharz

DESY, Hamburg

Olaf Leupold Hans-Christian Wille Ilya Sergeev Christian Grech Marc Guetg Vitali Kocharyan Shan Liu Weilun Qin

Solaris, Krakow

Tomasz Kolodziej

⁴⁵Sc Collaboration - 2024

Argonne National Laboratory

Peifan Liu Brandon Stone Deming Shu Yuri Shvyd'ko

Texas A&M University

Olga Kocharovskaya Xiwen Zhang

European XFEL

Alexey Zozulya
Jan-Etienne Pudell
Jörg Halmann
Wonhyuk Jo
Rustam Rysov
Angel Rodriguez-Fernandez
Kelin Tasca
Naresh Kujala
Gianluca Aldo Geloni
Anders Madsen

Kansas State University

James H. Edgar

Helmholtz Institute Jena & University of Jena

Ralf Röhlsberger Berit Marx-Glowna Willi Hippler Robert Loetzsch Sakshath Sadashivaiah

MPIK, Heidelberg

Jörg Evers Miriam Gerharz

DESY, Hamburg

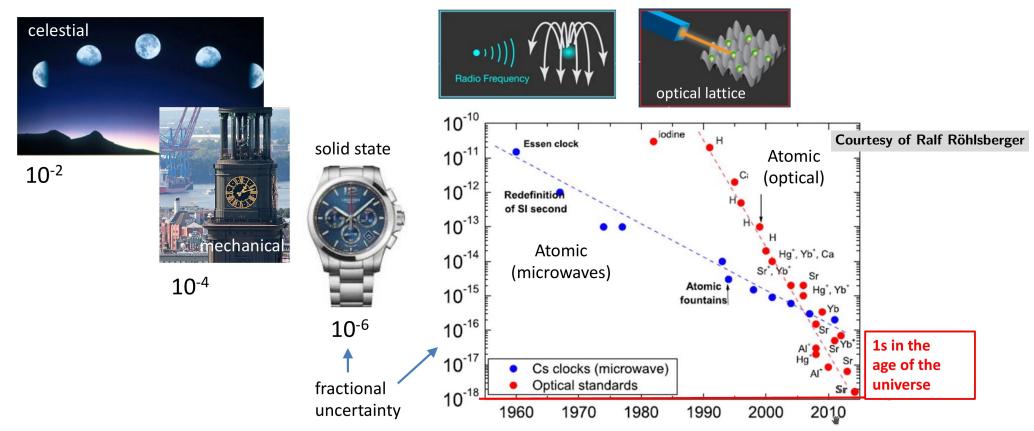
Ilya Sergeev
Hans-Christian Wille
Shan Liu
Christina Boemer
Dietrich Krebs
Lars Bocklage
Kai Schlage

Solaris, Krakow

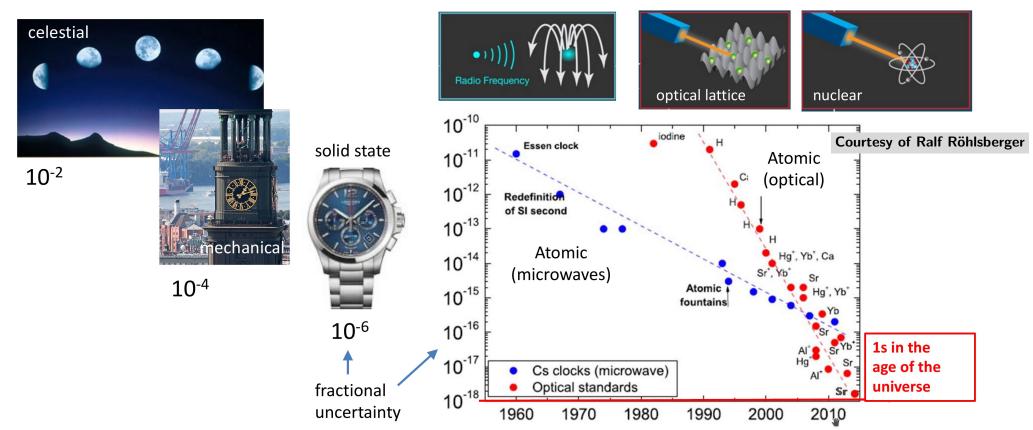
Tomasz Kolodziej

Hamburg University

Günter Huber

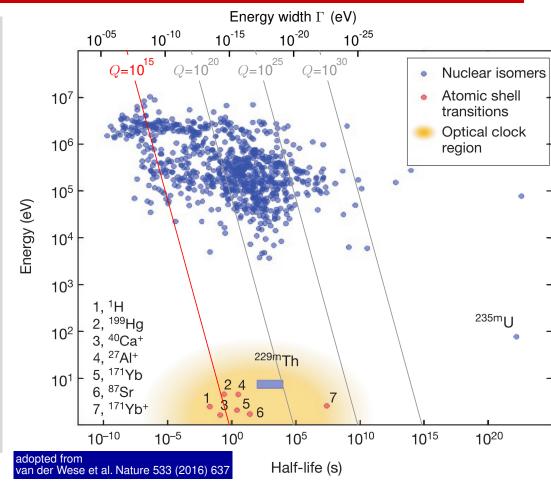


Frequency Standards Enable Time Measurements


Oscillators with stable frequencies and large quality factors – frequency standards – determine our ability to keep track of time. Atomic clocks are presently our most precise measurement devices. They define the second; enable GPS; test fundamental principles of physics with highest precision ...

Frequency Standards Enable Time Measurements

Oscillators with stable frequencies and large quality factors – frequency standards – determine our ability to keep track of time. Atomic clocks are presently our most precise measurement devices. Search for more accurate, stable, and convenient reference oscillators is ongoing.



Nuclear vs. Atomic Resonances

- 1. Higher Q-factors. $Q = E/\Gamma$
- 2. Higher frequency: a higher-frequency transition offers greater stability for simple statistical reasons (fluctuations are averaged over more cycles).
- 3. Insensitivity to environmental effects. Due to its small size, small magnetic moments, and the shielding effect of the surrounding electrons, an atomic nucleus is much less sensitive to ambient electromagnetic fields than is an electron in an orbital.
- 4. Macroscopic number of atoms can be used, because of the insensitivity to ambient fields, it is not necessary to have the clock atoms well-separated in a dilute gas or in ion traps a very low temperatures.
- 5. Mössbauer effect with nuclei in solids would allow solid-state amount of nuclei to exhibit narrow spectral resonance line at moderately-low temperatures.

E Peik, et al." Nuclear clocks for testing fundamental physics" Quantum Sci. Technol. 6 (2021) 034002

Nuclear Clock Isomer ^{229m}Th

 $\Gamma_o^{(229m{
m Th})}\sim 10^{-18}~{
m eV}$ (0.24 mHz)

A lot of effort was dedicated to studies of the 229m Th isomer and measurements of the nuclear transition energy: 8.338(24) eV [*].

L. van der Wese et al. Nature 533 (2016) 637

"Direct detection of the 229m Th nuclear clock transition"

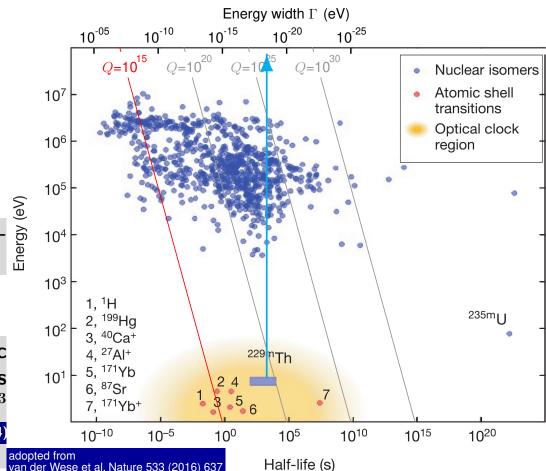
Seiferle, B. et al. Nature 573, 243 (2019)

Energy of the 229m Th nuclear clock transition.

[*] Kraemer, S. et al. Nature 617, 706 (2023)

Observation of the radiative decay of the 229m Th nuclear clock isomer.

Resonant laser excitation of 229m Th in a solidstate host was recently achieved:

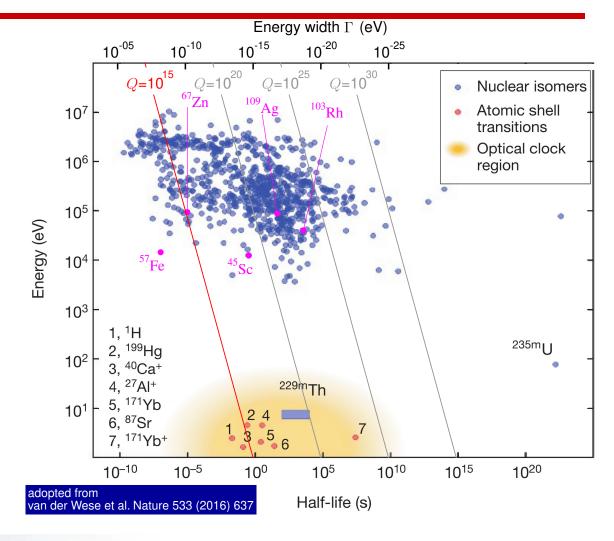

J. Tiedau, E. Peik et al. Phys. Rev. Lett. 132 (2024) 182501

R. Elwell, E. Hudson et al. Phys. Rev. Lett. 133 (2024) 013201

A frequency ratio of the 229m Th nuclear isomeric transition and the 87 Sr atomic clock transitions was established using a VUV comb with a 10^{-13} relative uncertainty. C. Zhang, J. Ye et al. Nature, 633 (2024)

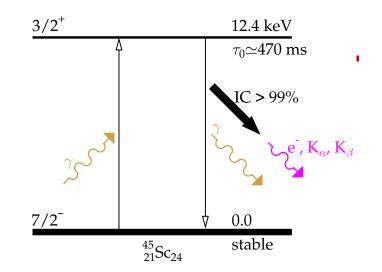
Resonance width: $\Gamma \simeq 25$ kHz.

T. Ooi, J Ye (2025) arXiv:2507.01180



Oct 17, 2025

Other Candidates for Nuclear Clocks

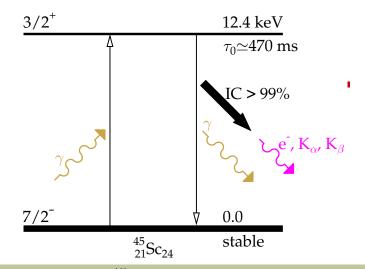

Most of the nuclear isomers (with stable ground states) have the excitation energy above 30 keV (67 Zn, 109 Ag, 119 Rh) and therefore cannot be driven by the modern coherent sources of electromagnetic radiation.

Fortunately, along with 229m Th there is another notable exception – 45 Sc.

12.4-keV Nuclear Resonance of ⁴⁵Sc Basic Features

Excitation energy: $E=12.40\pm0.05$ keV, [1,2,3,6] excited state lifetime: $\tau=0.47$ s, [1,5,6] natural energy width: $\Gamma_0=\hbar/\tau=1.4\times10^{-15}$ eV=1.4 feV (0.33 Hz), resonance quality: $Q=E/\Gamma_0\simeq10^{19}$, internal conversion coefficient: $\alpha\simeq630$, [4,5,6] 45 Sc natural abundance: 100%, gravitational red shift: 1 mm/ Γ_0 , room temperature Lamb-Mössbauer factor: $f_{\rm LM}\simeq0.8$.

- [1] Holland R.E., Lynch F.J., Nystén K.E., PRL 13 (1964) 241-243.
- [2] Freedman, M. S., Porter, F. T. & Wagner F.Jr, Phys. Rev. 140, B563-B565 (1965).
- [3] Porter, F. T., Freedman, M. S., Wagner F., & Orlandini, K. A., Phys. Rev. 146, 774-780 (1966).
- [4] Jones, K. W. and Schwarzschild, Phys. Rev. 148, 1148-1150 (1966).
- [5] Blaugrund, A. E., Holland, R. E. & Lynch, F. J., Phys. Rev. 159, 926-930 (1967).
- [6] Burrows, T. W., Nuclear Data Sheets 109, 171-296 (2008).


12.4-keV Nuclear Resonance of ⁴⁵Sc History in Brief

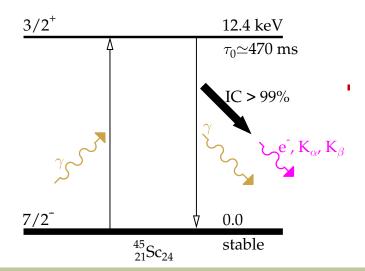
Excitation energy: $E=12.40\pm0.05~{
m keV}$,

excited state lifetime: $\tau = 0.47$ s,

natural energy width: $\Gamma_0 = \hbar/\tau = 1.4$ feV,

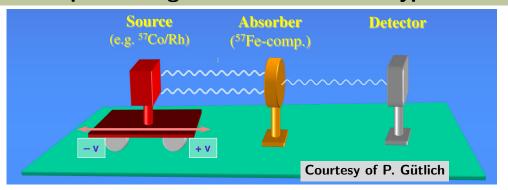
resonance quality: $Q = E/\Gamma_0 \simeq 10^{19}$.

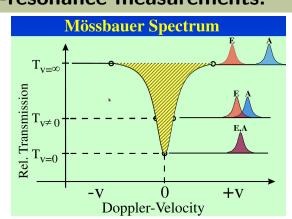
• A 13-keV gamma-emitting state of 0.44-sec mean lifetime was found in 45 Sc by (p,p') reaction on 45 Sc at Argonne National Laboratory in 1964. R.E. Holland, F.J. Lynch, K.E. Nystén, PRL 13 (1964) 241-243


12.4-keV Nuclear Resonance of 45 Sc History in Brief

Excitation energy: $E=12.40\pm0.05~{
m keV}$,

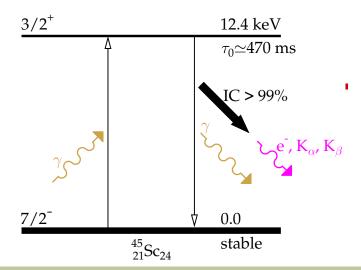
excited state lifetime: au=0.47 s,


natural energy width: $\Gamma_{\scriptscriptstyle 0}=\hbar/ au=1.4$ feV,


resonance quality: $Q=E/\Gamma_{_0}\simeq 10^{19}.$

- A 13-keV gamma-emitting state of 0.44-sec mean lifetime was found in 45 Sc by (p,p') reaction on 45 Sc at Argonne National Laboratory in 1964. R.E. Holland, F.J. Lynch, K.E. Nystén, PRL 13 (1964) 241-243
- Unfortunately, ⁴⁵Sc does not have any convenient parent radioactive source.

This prevented performing classical Mössbauer-type nuclear-resonance measurements.


12.4-keV Nuclear Resonance of ⁴⁵Sc History in Brief

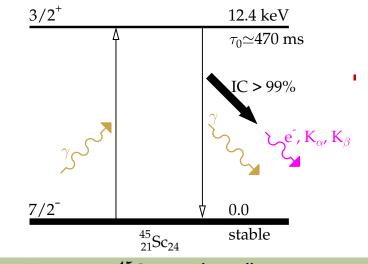
Excitation energy: $E=12.40\pm0.05$ keV,

excited state lifetime: au=0.47 s,

natural energy width: $\Gamma_0=\hbar/ au=1.4$ feV,

resonance quality: $Q = E/\Gamma_0 \simeq 10^{19}$.

- A 13-keV gamma-emitting state of 0.44-sec mean lifetime was found in 45 Sc by (p,p') reaction on 45 Sc at Argonne National Laboratory in 1964. R.E. Holland, F.J. Lynch, K.E. Nystén, PRL 13 (1964) 241-243
- Unfortunately, ⁴⁵Sc does not have any convenient parent radioactive source.

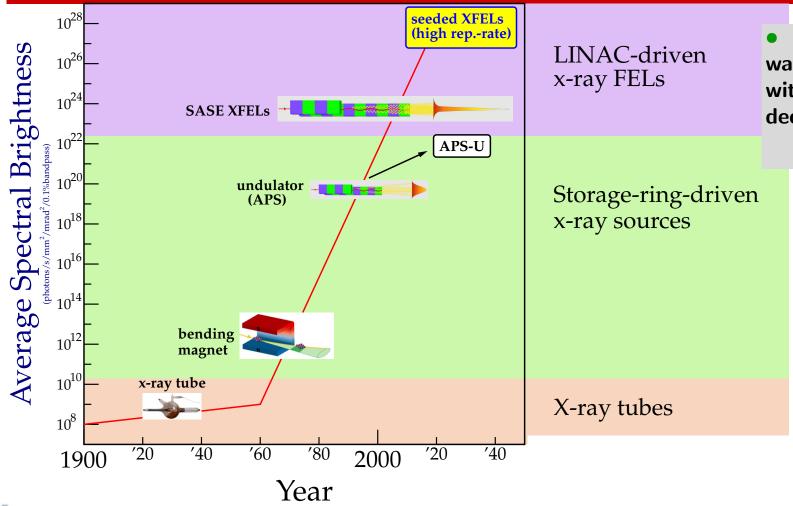

This prevented performing classical Mössbauer-type nuclear-resonance measurements.

- 45Sc was rediscovered and resurrected in 1990:
- (1) resonant excitation of ⁴⁵Sc is feasible using 12.4-keV x-rays from accelerator-based x-ray sources of high spectral brightness and flux, which started to emerge in 1990s (ESRF, APS, SPring-8);
- (2) spectral width of the long-lived state can be accessed by measuring time dependence of coherent nuclear-resonant forward scattering (NFS) Yu. Shvyd'ko and G.V. Smirnov NIM 51 (1990) 452-457.

12.4-keV Nuclear Resonance of ⁴⁵Sc History in Brief

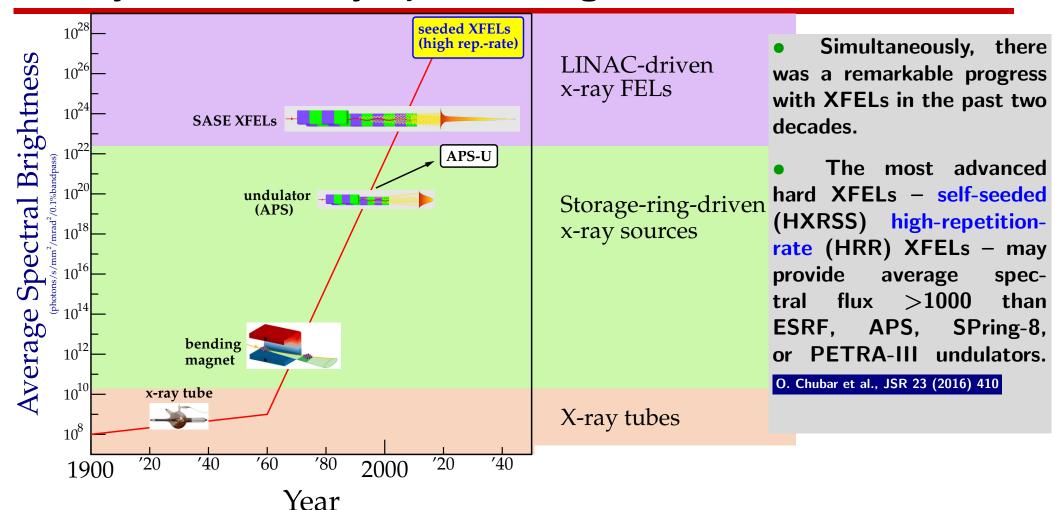
Excitation energy: $E=12.40\pm0.05$ keV, excited state lifetime: $\tau=0.47$ s, natural energy width: $\Gamma_{\rm o}=\hbar/\tau=1.4$ feV,

resonance quality: $Q = E/\Gamma_0 \simeq 10^{19}$.

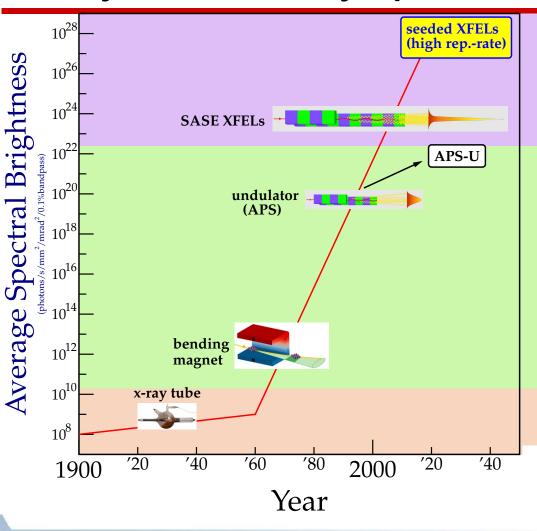

- A 13-keV gamma-emitting state of 0.44-sec mean lifetime was found in 45 Sc by (p, p') reaction on 45 Sc at Argonne National Laboratory in 1964. R.E. Holland, F.J. Lynch, K.E. Nystén, PRL 13 (1964) 241-243
- Unfortunately, ⁴⁵Sc does not have any convenient parent radioactive source.

This prevented performing classical Mössbauer-type nuclear-resonance measurements.

- 45Sc was rediscovered and resurrected in 1990:
- (1) resonant excitation of ⁴⁵Sc is feasible using 12.4-keV x-rays from accelerator-based x-ray sources of high spectral brightness and flux, which started to emerge in 1990s (ESRF, APS, SPring-8);
- (2) spectral width of the long-lived state can be accessed by measuring time dependence of coherent nuclear-resonant forward scattering (NFS) Yu. Shvyd'ko and G.V. Smirnov NIM 51 (1990) 452-457.
- Attempts to detect the 45 Sc resonance at 3rd-generation synchrotron radiation sources (ESRF, APS, SPring-8) were so far unsuccessful. Spectral flux was still low.


Nuclera clock isomer ⁴⁵Sc & XFELs Oct 17, 2025 foil 10/27

History of Hard X-ray Spectral Brightness



 Simultaneously, there was a remarkable progress with XFELs in the past two decades.

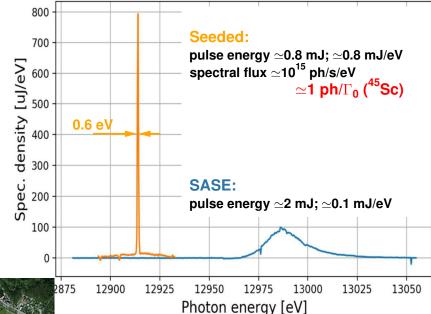
History of Hard X-ray Spectral Brightness

History of Hard X-ray Spectral Brightness

LINAC-driven x-ray FELs

Storage-ring-driven x-ray sources

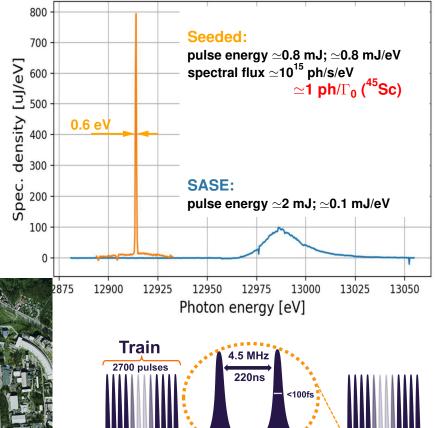
X-ray tubes

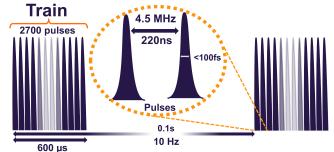

- Simultaneously, there was a remarkable progress with XFELs in the past two decades.
- The most advanced hard XFELs self-seeded (HXRSS) high-repetition-rate (HRR) XFELs may provide average spectral flux >1000 than ESRF, APS, SPring-8, or PETRA-III undulators.

O. Chubar et al., JSR 23 (2016) 410

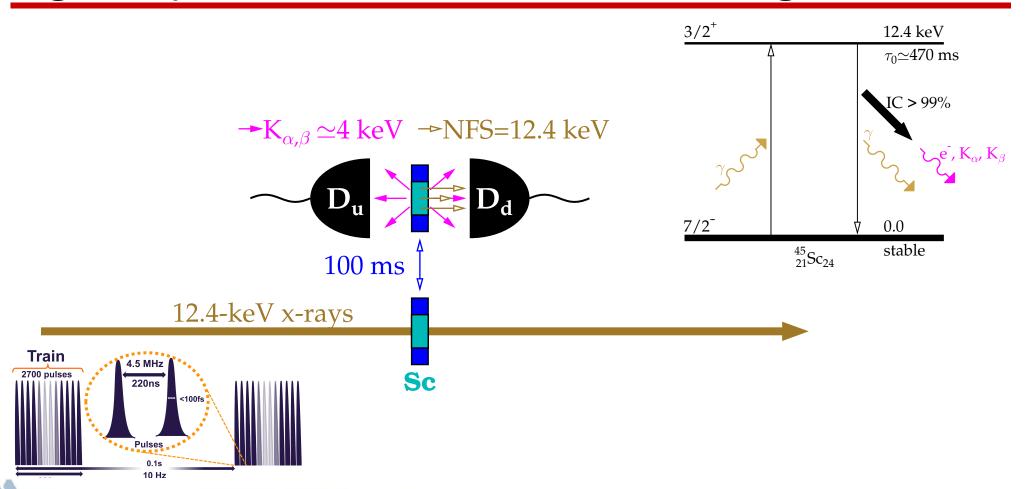
• HXRSS HRR XFELs may provide sufficient spectral flux to drive 45 Sc resonance.

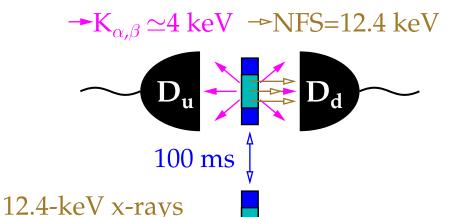
⁴⁵Sc Experiment at European XFEL (Hamburg, Germany)


- European XFEL is the 1st high rep.-rate XFEL W. Decking, et al. Nat. Photonics, 14 (2020) 391
- An average spectral flux at 13 keV of up to \simeq $10^{15} \, \mathrm{ph/s/eV} \simeq 1 \, \mathrm{ph/\Gamma_0(^{45}Sc)}$ was demonstrated in selfseeded mode S. Liu et al. Nature Photonics 17 (2023) 984

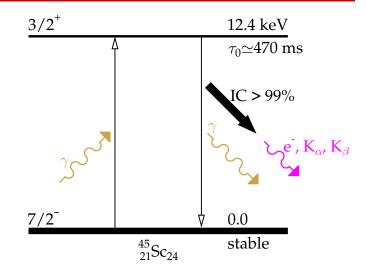


⁴⁵Sc Experiment at European XFEL (Hamburg, Germany)


- European XFEL is the 1st high rep.-rate XFEL W. Decking, et al. Nat. Photonics, 14 (2020) 391
- An average spectral flux at 13 keV of up to \simeq $10^{15} \, \mathrm{ph/s/eV} \simeq 1 \, \mathrm{ph/\Gamma_0(^{45}Sc)}$ was demonstrated in selfseeded mode S. Liu et al. Nature Photonics 17 (2023) 984
- European XFEL has a unique time structure suitable perfectly for the detection of the ⁴⁵Sc resonance: sub-ms pulse trains with a 100-ms dark time.


Osdorfer Born

⁴⁵Sc Experiment in a Nutshell: Highest Spectral Flux – Lowest Detector Background



⁴⁵Sc Experiment in a Nutshell: Highest Spectral Flux – Lowest Detector Background

With a 25- μ m thick Sc metal target exposed to an x-ray beam with $\simeq 1$ ph/s/ $\Gamma_0 \simeq 10^{15}$ ph/s/eV, the expected count-rate in D₁ or D₂ of 4-keV K_{α,β}-fluorescence is 1-5 ph/100 s.

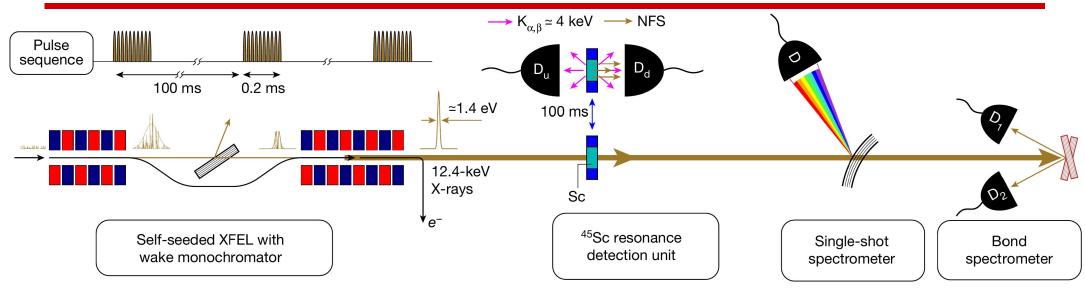
Sc

Train

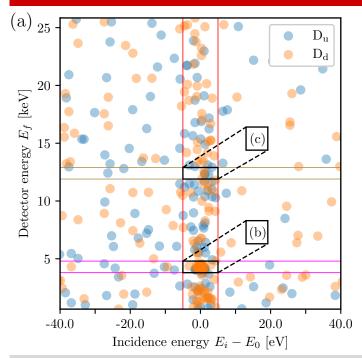
2700 pulses

220ns

2100fs

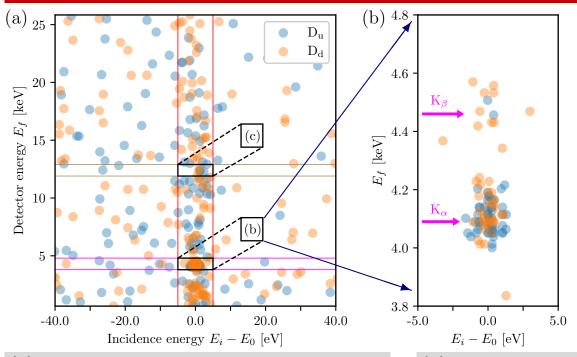

Pulses

0.1s


10 Hz

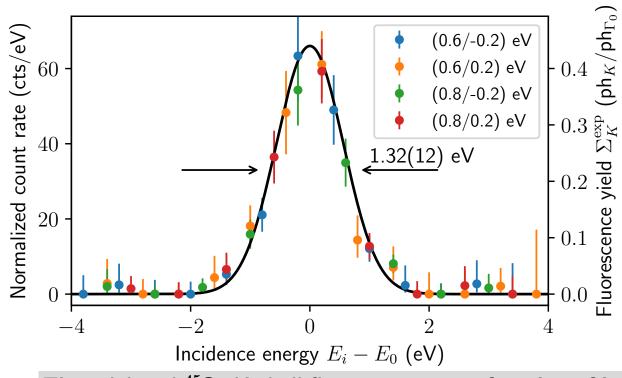
Detection of the nuclear decay products with time, spatial, energy, and polarization discrimination ensures very low detector noise floor <2 counts/10000 s.

Experimental Setup and Experiment Execution (2022)


⁴⁵Sc Resonance Detected - 2D Picture

(a) Counts from the $D_{\rm u}$ and $D_{\rm d}$ x-ray detectors plotted as the energy $E_{\rm f}$ of the detected X-ray photons versus incident X-ray photon energy $E_{\rm i}-E_{\rm 0}$. The photons were recorded in a time window of \simeq 20-80 ms after every pulse-train excitation.

- XFEL photon energy E_i was scanned in a \pm 50 eV range around 12.4 keV.
- $\bullet \ \, \simeq \ \, 10^{20}$ of 12.4-keV photons were directed to Sc targets.

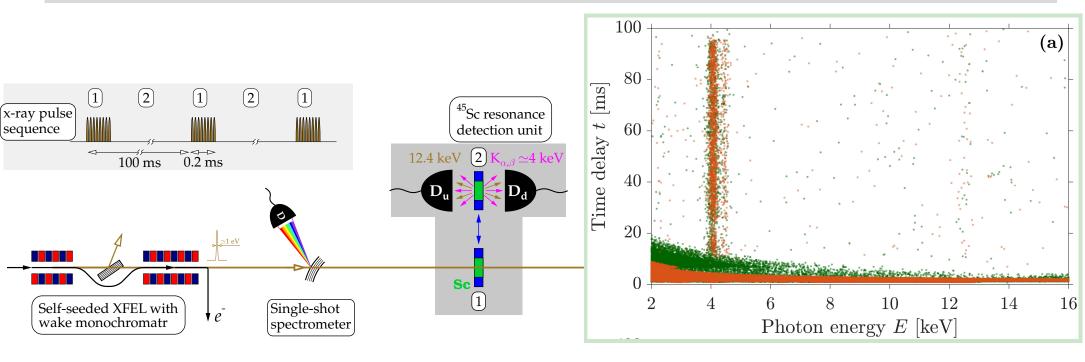

⁴⁵Sc Resonance Detected - 2D Picture

- XFEL photon energy E_i was scanned in a \pm 50 eV range around 12.4 keV.
- $ho \simeq 10^{20}$ of 12.4-keV photons were directed to Sc targets.
- \simeq 93 of 4-keV K_{α,β}-fluorescence photons were detected with a >20-ms delay.
- Signal to noise ratio $\simeq 70$.

- (a) Counts from the $D_{\rm u}$ and $D_{\rm d}$ x-ray detectors plotted as the energy $E_{\rm f}$ of the detected X-ray photons versus incident X-ray photon energy $E_{\rm i}-E_{\rm 0}$. The photons were recorded in a time window of \simeq 20-80 ms after every pulse-train excitation.
- (b) Close-up of the 4.3-keV ROI, showing two clusters of counts centered at the energies of Sc K $_{\alpha}$ (4.09 keV) and K $_{\beta}$ (4.46 keV) fluorescence as a direct confirmation of detection of the 45 Sc resonance.

⁴⁵Sc Resonance Detected & Resonance Energy Determined

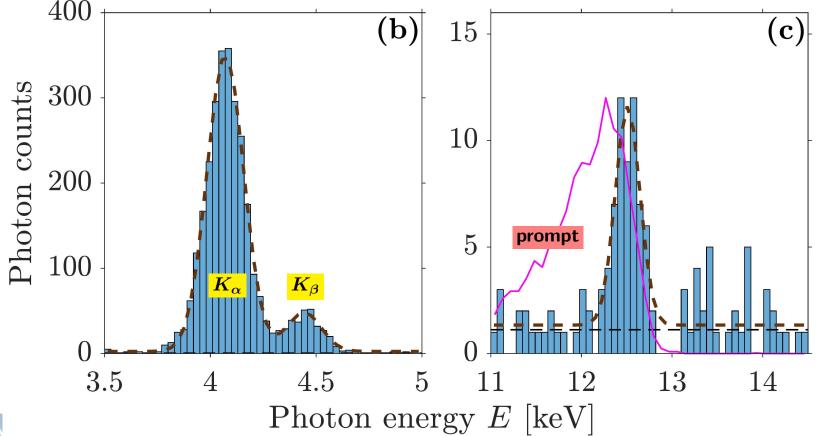
The $^{45}{\rm Sc}$ nuclear resonance transition energy $E_{\scriptscriptstyle 0}$ previously known to an uncertainty of $\simeq \pm 50$ eV, was determined with more than a hundred times higher accuracy as


 $E_0=$ 12,389.59 $^{\pm0.15
m (stat)}_{+0.12
m (syst)}$ eV using Bond technique.

Time-delayed 45 Sc K-shell fluorescence as a function of incoming X-ray photon energy $E_{\rm i}$ relative to resonance energy E_0 .

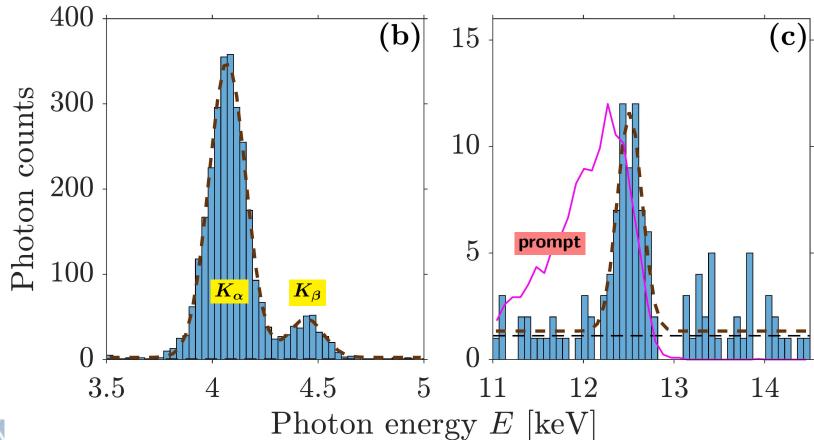
The spectral width of 1.32(12) eV reflects the spectral width of the incoming XFEL radiation. The colored dots are exemplary binned data.

Incoherent Fluorescence of 45 Sc vs. Re-emitted Photon Energy E & Delay Time t (2024)

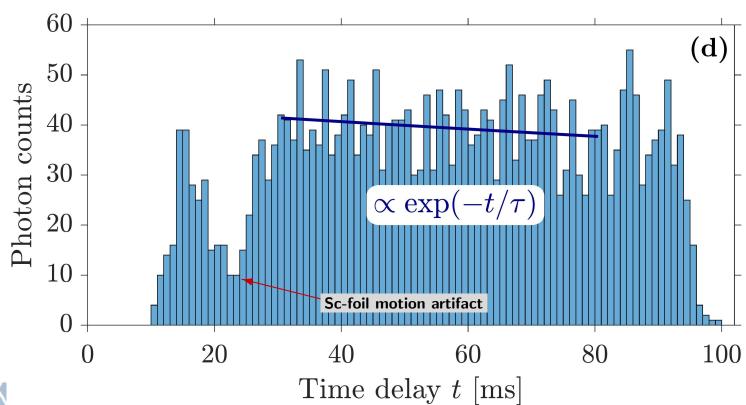

- 45 Sc fluorescence is detected with x-ray detectors D_u and D_d as a function of re-emitted photon energy E and photon delay time t after pulse excitation.
- Background (D_u+D_d): 1.8 counts/keV/10000 s.
- Total data acquisition time: 24.9 hours.

Incoherent Fluorescence of 45 Sc vs. Photon Energy E

Countrates in detectors $D_u + D_d$ [delay time integration: 15-100 ms, energy integration: 1 keV].

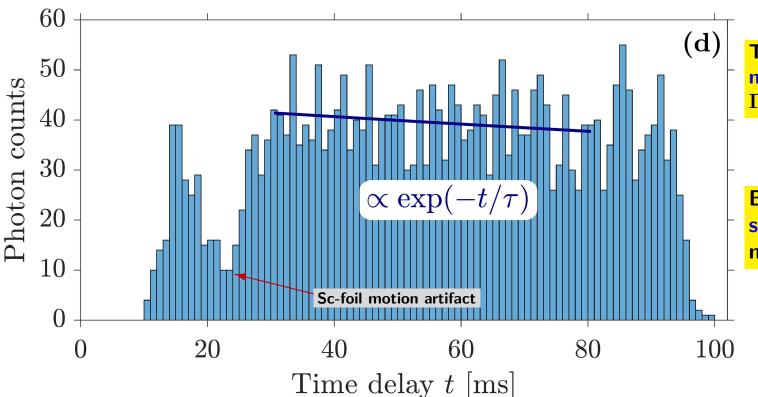

- Delayed 4-keV $(K_{\alpha,\beta})$ photons: R_4 =328(6) ph/10000 s \Rightarrow SNR=183 (SNR=65 in 2022)
- Delayed 12.4-keV photons: $R_{12}=10(1)$ ph/10000 s \Rightarrow SNR=5

Internal Conversion Coefficient $\alpha_{\scriptscriptstyle K}$ for Isomer $^{45}{\rm Sc.}$


Measured fluorescence countrates of $K_{\alpha,\beta}$ vs. 12.4-keV allows us to determine $\alpha_K = 350(65)$. It agrees with $\alpha_K^* = 363$ predicted by the state-of-the-art theory Kibedi, T., et al., NIM A 589, 202-229 (2008)

Incoherent Fluorescence of 45 Sc vs. Time Delay t

- Photon energy integration: 3.75 keV 4.75 keV.
- Fit to $\propto \exp(-t/\tau)$ in a \simeq (30 80 ms) range is sensitive to: start/end and # of bins.
- Best fit: $\tau = 460(250)$ ms.
- Agrees with τ =470(6) ms Blaugrund, A. E., et al., Phys. Rev. 159, 926 (1967). (via Coulomb excitation)



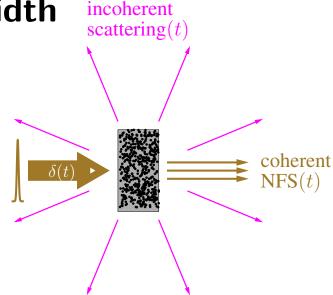
Nuclera clock isomer ⁴⁵Sc & XFELs

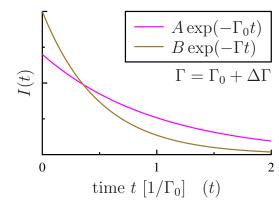
Incoherent Fluorescence of 45 Sc vs. Time Delay t

- Photon energy integration: 3.75 keV 4.75 keV.
- Fit to $\propto \exp(-t/\tau)$ in a \simeq (30 80 ms) range is sensitive to: start/end and # of bins.
- Best fit: $\tau = 460(250)$ ms.
- Agrees with τ =470(6) ms Blaugrund, A. E., et al., Phys. Rev. 159, 926 (1967). (via Coulomb excitation)

This confirms the ultra-narrow natural resonance width $\Gamma_0 = \hbar/\tau \simeq 1.4$ feV of ⁴⁵Sc.

But, it is not yet the nuclear resosolid-state nance width $\Gamma = \Gamma_0 + \Delta \Gamma$.

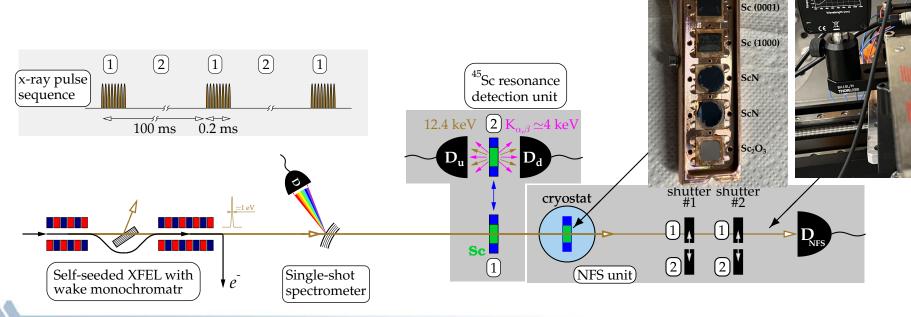

⁴⁵Sc Nuclear Forward Scattering to Determine the Solid-State Resonance Width


- We do not know the actual width $\Gamma = \Gamma_0 + \Delta \Gamma$ of the ⁴⁵Sc resonance in a solid state target, and how much is it broadened $-\Delta\Gamma$ compared to the natural linewidth Γ_0 =1.4 feV?
- Measuring $\Gamma \simeq$ feV directly is a formidable challenge.

⁴⁵Sc Nuclear Forward Scattering to Determine the Solid-State Resonance Width

- We do not know the actual width $\Gamma = \Gamma_0 + \Delta \Gamma$ of the ^{45}Sc resonance in a solid state target, and how much is it broadened
- $-\Delta\Gamma$ compared to the natural linewidth Γ_0 =1.4 feV?
- Measuring $\Gamma \simeq$ feV directly is a formidable challenge.
- Measuring complementary time dependences on the millisecond-scale instead of energy dependences on the feV-scale is a more straightforward approach.
- It requires measuring time dependence of coherent nuclear forward scattering (NFS) to access Γ .

Yu. Shvyd'ko and G.V. Smirnov NIM 51 (1990) 452-457


Nuclear Forward Scattering (NFS) Set-up

• NFS crystal targets (Sc, Sc_2O_3 , ScN, and $ScAIMgO_4$) are in a cryostat at 40 K. Each target is placed into the beam sequentially and raster-scanned to reduce radiation damage.

• Two synchronized shutters #1 & #2 open NFS path from the target to the NFS detector 2 ms after the excitation.

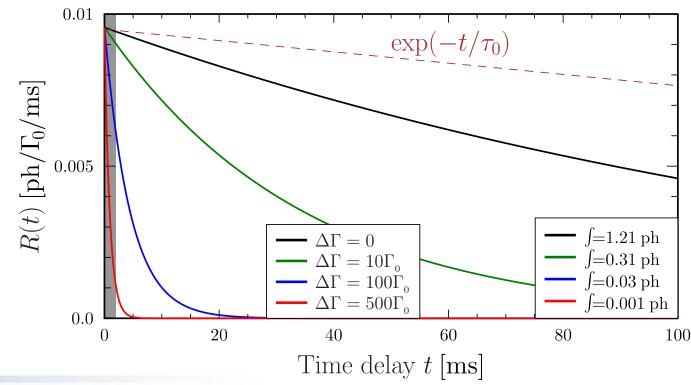
The resonance detection unit is always on:

to confirm that the XFEL is on resonance.

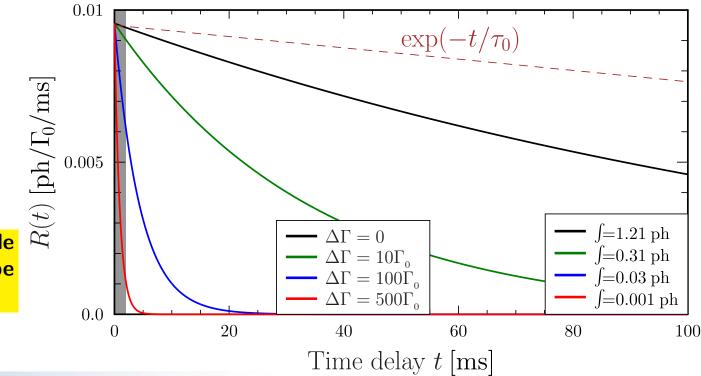
ScAlMgO

ScAlMgO

⁴⁵Sc NFS Targets (only crystal samples are used)

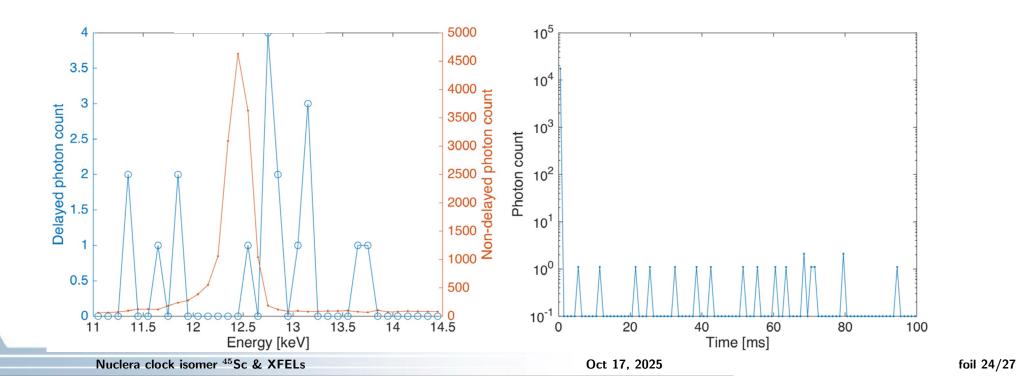

Selection criteria: minimal magnetic and electric interactions; high density of Sc; low density and photo-absorption of ballast elements; high thermal conductivity; chemical purity and stoichiometry; crystal perfection, etc.

substance	Sc	ScN	Sc_2O_3	ScAIMgO ₄	ScF ₃
					(not used)
space group	P63/mmc	$Fm\overline{3}m$	$Ia\overline{3}$	$R\overline{3}m$	$Pm\overline{3}m$
	(194) hcp	(225) NaCl	(206)	(166) [?]	(221) [? ?]
magnetism	paramag.	diamag.	diamag.	diamag.	diamag.
Quadrupole interaction parameters					
$\parallel eQ_{ m g}V_{zz}/h$ [MHz]	$\simeq 2$ [?]	0 [? ?]	15.5 - 24.4	?	0
$\parallel \eta$	0?	0	0.69 - 0 [? ?]	?	0
density [g/cm ³]	2.985	4.28	3.86	3.64	2.57
Photo-absorption length $L_{_{ m a}}$ [μ m]	60	54.5	69.7	133	146
Sc number dens. $N_{\scriptscriptstyle 0}\! imes\!10^{22}[{ m 1/cm^3}]$	3.98	4.37	3.18	0.88	1.54
Optimized optical thickness	9.06	9.04	8.42	4.45	8.57
$\parallel L_{_{ ext{eff}}} = \sigma_{_{ ext{R}}} N_{_0} 2 L_{_{ ext{a}}}$					
Optimized $\xi = L_{ ext{eff}}/4$	2.26	2.26	2.10	1.11	2.14
Thermal conductivity @300 K [W/m K]	15.8	51-56 [?]	17.3	4 [?]	9.6 [?]

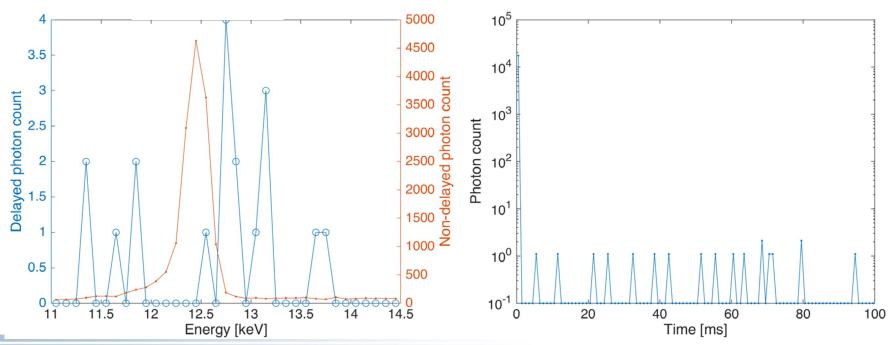

⁴⁵Sc Nuclear Forward Scattering (NFS) - Expected Results

- R(t): NFS rate as function of time delay after resonant excitation with ultra-short x-ray pulse.
- R(t) is calculated for
- a single resonance for different values of inhomogenious resonance broadening $\Gamma=\Gamma_{_0}+\Delta\Gamma$
- a NFS target with nuclear resonance optical thickness parameter $\xi=2$ (as in the experiment)
- Incident spectral flux: 1 ph/ Γ_0 /pulse.

⁴⁵Sc Nuclear Forward Scattering (NFS) - Expected Results


- R(t): NFS rate as function of time delay after resonant excitation with ultra-short x-ray pulse.
- R(t) is calculated for
- a single resonance for different values of inhomogenious resonance broadening $\Gamma = \Gamma_{_0} + \Delta \Gamma$
- a NFS target with nuclear resonance optical thickness parameter $\xi=2$ (as in the experiment)
- Incident spectral flux: 1 ph/ Γ_0 /pulse.

• With a minimum measurable delay time of 2 ms, NFS can be detected if $\Delta\Gamma < 500\Gamma_0$.


⁴⁵Sc Nuclear Forward Scattering (NFS) - First Results

- Delayed 45 Sc $K_{\alpha,\beta}$ fluorescence countrate $\simeq 300$ ph/10000 s: XFEL is on 45 Sc resonance.
- ullet 12.4-keV prompt photons (at t=0) leaking through the shutter blade are detected by ${\sf D}_{
 m NFS}$.

⁴⁵Sc Nuclear Forward Scattering (NFS) - First Results

- Delayed 45 Sc $K_{\alpha,\beta}$ fluorescence countrate $\simeq 300$ ph/10000 s: XFEL is on 45 Sc resonance.
- ullet 12.4-keV prompt photons (at t=0) leaking through the shutter blade are detected by ${\sf D}_{
 m NFS}$.
- Delayed photons are very rare $\simeq 2$ ph/10000 s, homogeneously distributed in time, and have wrong energy.
- NFS signal obviously decays faster than the smallest measurable delay time of 2 ms meaning that $\Gamma > 500\Gamma_0$.

Why $\Gamma > 500~\Gamma_0$ and How this Could be Improved?

Why?

- Magnetic dipole-dipole interaction $\mu_{\rm e} \Leftrightarrow \mu_{\rm g}$ results in a maximum energy shift of $U_{\rm max}=2\mu_{\rm e}\mu_{\rm g}/R^3\simeq 1500$ (3000) $\Gamma_{\rm 0}$ or 500 (1000) Hz for $^{45}{\rm Sc}$ in ${\rm Sc}_2{\rm O}_3$ (ScN)
- Unhomogeneous broadening due to distribution of HFI parameters in imperfect NFS crystals.
- Heatload induce further crystal imperfections.

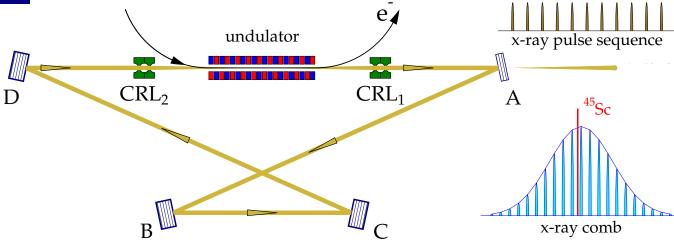
How?

- NFS crystal targets of highest crystallinity and chemiocal purity characterized with NMR,
 X-rays, EDS etc.
- Milder excitation conditions.
- Dynamic resonance narrowing, etc.

⁴⁵Sc Mössbauer Nuclear Clock and XFELO

Realization of the ⁴⁵Sc Mössbauer nuclear clock will require

- (1) a further increase of the resonant spectral flux using improved narrow-band 12.4-keV X-ray sources and
- (2) frequency combs stretching up to this energy.

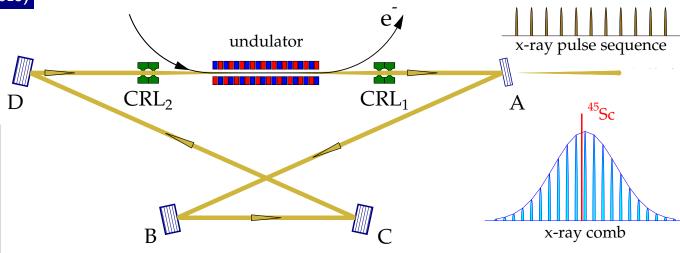


⁴⁵Sc Mössbauer Nuclear Clock and XFELO

• X-ray free-electron-laser oscillator (XFELO) [1] and hard X-ray comb generated by a nuclear-resonance-stabilized XFELO [2].

[1] K.-J. Kim, Yu. Shvyd'ko, S. Reiche PRL 100, 244802 (2008)

[2] B. Adams and K.-J. Kim PRAB 18, 030711 (2015)


⁴⁵Sc Mössbauer Nuclear Clock and XFELO

• X-ray free-electron-laser oscillator (XFELO) [1] and hard X-ray comb generated by a nuclear-resonance-stabilized XFELO [2].

[1] K.-J. Kim, Yu. Shvyd'ko, S. Reiche PRL 100, 244802 (2008)

[2] B. Adams and K.-J. Kim PRAB 18, 030711 (2015)

• R&D on the realization of such devices is presently in progress at ANL/SLAC (USA) [3], at EuXFEL (Germany) [4], and is considered at SHINE (China) [5].

- [3] G. Marcus et al., (2019) https://doi.org/10.18429/JACoW- FEL2019-TUD04
- [4] P. Rauer et al., PRAB 26, 020701 (2023) + recent demonstration (2025)
- [5] N.-S. Huang et al., Nuclear Science and Techniques (2023) 34:6

• The nuclear transition in 45 Sc was resonantly excited from the ground to the long-lived 12.4-keV excited state by x-rays for the first time.

- The nuclear transition in ⁴⁵Sc was resonantly excited from the ground to the long-lived 12.4-keV excited state by x-rays for the first time.
- Successful resonant excitation of the ⁴⁵Sc resonance opens up new horizons for ultra-high precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state ⁴⁵Sc nuclear frequency standard (Mössbauer nuclear clock).

- The nuclear transition in ⁴⁵Sc was resonantly excited from the ground to the long-lived 12.4-keV excited state by x-rays for the first time.
- Successful resonant excitation of the ⁴⁵Sc resonance opens up new horizons for ultra-high precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state ⁴⁵Sc nuclear frequency standard (Mössbauer nuclear clock).
- High repetition-rate, narrow-band XFELs is an ideal platform to drive and study long-lived nuclear resonances at energies of hard X-rays.

- The nuclear transition in ⁴⁵Sc was resonantly excited from the ground to the long-lived 12.4-keV excited state by x-rays for the first time.
- Successful resonant excitation of the ⁴⁵Sc resonance opens up new horizons for ultra-high precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state ⁴⁵Sc nuclear frequency standard (Mössbauer nuclear clock).
- High repetition-rate, narrow-band XFELs is an ideal platform to drive and study long-lived nuclear resonances at energies of hard X-rays.
- ullet The following 45 Sc resonance parameters were measured in the experiments:
 - resonance energy $E_0 = 12,389.59^{\pm 0.15 \mathrm{(stat)}}_{+0.12 \mathrm{(syst)}}$ eV
 - internal conversion coefficient $\alpha_{\scriptscriptstyle K}=350(60)$
 - decay time constant $\tau_0 = 480(250)$ ms

- The nuclear transition in ⁴⁵Sc was resonantly excited from the ground to the long-lived 12.4-keV excited state by x-rays for the first time.
- Successful resonant excitation of the ⁴⁵Sc resonance opens up new horizons for ultra-high precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state ⁴⁵Sc nuclear frequency standard (Mössbauer nuclear clock).
- High repetition-rate, narrow-band XFELs is an ideal platform to drive and study long-lived nuclear resonances at energies of hard X-rays.
- ullet The following 45 Sc resonance parameters were measured in the experiments:
 - resonance energy $E_0 = 12,389.59^{\pm 0.15 \mathrm{(stat)}}_{+0.12 \mathrm{(syst)}}$ eV
 - internal conversion coefficient $\alpha_{\kappa} = 350(60)$
 - decay time constant $\tau_0 = 480(250)$ ms
- No NFS signal was observed indicating that the solid state 45 Sc resonance Γ was broadened at least by $500~\Gamma_0$. Observation of NFS is the primary current goal.

- The nuclear transition in ⁴⁵Sc was resonantly excited from the ground to the long-lived 12.4-keV excited state by x-rays for the first time.
- Successful resonant excitation of the ⁴⁵Sc resonance opens up new horizons for ultra-high precision spectroscopy, extreme metrology in the regime of hard x-rays, and for a solid state ⁴⁵Sc nuclear frequency standard (Mössbauer nuclear clock).
- High repetition-rate, narrow-band XFELs is an ideal platform to drive and study long-lived nuclear resonances at energies of hard X-rays.
- The following ⁴⁵Sc resonance parameters were measured in the experiments:
 - resonance energy $E_0 = 12,389.59^{\pm 0.15 \mathrm{(stat)}}_{+0.12 \mathrm{(syst)}}$ eV
 - internal conversion coefficient $\alpha_{\scriptscriptstyle K}=350(60)$
 - decay time constant $\tau_0 = 480(250)$ ms
- No NFS signal was observed indicating that the solid state 45 Sc resonance Γ was broadened at least by $500~\Gamma_0$. Observation of NFS is the primary current goal.
- ullet Progress with the seeded XFELs and XFELOs is essential for the realization of the 45 Sc Mössbauer nuclear clock.