The status of the GBAR experiment

Center for Underground Physics Institute of Basic Science

b^S Institute for Basic Science Bongho Kim

26th International Conference on Accelerators and Beam Utilizations

Introduction : Antimatter

- In 1928, solution of Dirac equation with negative energy predicts antimatter and the antimatter is experimentally confirmed in 1932
- Antimatter is partner of matter for CPT reversal, but our universe is matter dominant universe
- Currently measure CP violation is not enough to explain this asymmetry
- Efforts to check CPT symmetry have given by measuring fundamental property of matter and antimatter

2024-11-14

Low energy Antiproton beam facility

AD : Only existing facility of low energy \overline{p} (PANDA at FAIR has higher energy)

- Antiproton Decelerator (AD) + ELENA : Antiproton Factory (for high statistics)
- For precision measurement by Electromagnetic and Gravitational property, **deceleration**, **cooling and trapping** techniques are important
- 26GeV/c proton \rightarrow 3GeV/c antiproton to 0.1GeV/c at AD \rightarrow 5.3MeV(0.1GeV/c) to 100KeV at ELENA

GBAR experiment

GBAR needs to **cool** the anti-atom to \sim **1neV** (10uK)

- GBAR : Gravitational Behaviour At Rest
- Freefalling antimatter (anti-hydrogen) in terrestrial gravitational field
- + CPT test by measuring atomic structure : Lamb shift measurement
- =Check fundamental interaction between matter & antimatter
- Weak Equivalence Principle(WEP) :

$$m_I = m_G \ (F = m_I a = -G m_G m'_G / r^2)$$

$$m_I = \overline{m_I} (by \ CPT)$$

$$m_G = m_I = \overline{m_I} = ? \overline{m_G}$$

(for matter $\Delta (m_g/m_i)/(m_g/m_i)_{Be/Ti} = (0.3 \pm 1.8)10^{-13}$)

GBAR experiment

Velocity fluctuation	100m/s	3m/s	0.1m/s
Temperature	1K	1mK	1uK

- After dropping one of e⁺ (by photo-detachment laser), let the ultra-cold anti-hydrogen freefall.
- Direct measurement of the gravitational acceleration $(m_H g \sim 10^{-7} eV/m)$ of anti-hydrogen (WEP_{ff}) below 1%
- \overline{H}^+ is required to get ultra-cold \overline{H} which can go below 10⁻⁵ precision 26th International Conference on Accelerators and Beam Utilizations

Quantum reflection and levitation

1. Capture trap (ITO trap) : capturing by DC switching+ rf voltage electrodes

Sympathetic Doppler cooling by cooled Be⁺ ions (>10,000 laser(313nm) cooled Be⁺/HD⁺ ions (Wigner crystal), 100 neV, T~mK by rf heating) (L. Hilico et. al., Int. J. Mod. Phys. Conf. Ser. 30, 1460269 (2014))

2. Precision trap : ion as a quantum harmonic oscillator, Raman sideband cooling for Be^+/\overline{H} ion pair to T~10uK. (W. Schnitzler et. al, Physical Review Letters 102, 070501 (2009).)

- 3. Photo detachment and free-fall
- 4. Polarization and Shaping with 0.1% uncertainty for 10,000 event (O.Rousselle et al, Eur. Phys. J. D 76, 209 (2022))

5. Quantum bouncing by Casimir-Polder potential vs Gravitational potential 10⁻⁵ precision (G. Dufour et al., Eur. Phys. J. C (2014) 74: 2731) 2024-11-14 26th International Conference on Accelerators and Beam Utilizations Y (mm

290

292 -

£ 296

298

300 -

302 -

 $J(m^{-2}s^{-1})$

- 2500

2000

1000

GBAR collaboration

NEUTRONS

CSNSM

Eidgenössische Technische Hochschu

Collaboration :

8countries ,18institutes, 64members

Korean team

Senior : 6 Students : 3 (+2 : graduated)

26th International Conference on Accelerators and Beam Utilizations

Experiment setup (2022)

Positron beam line

Antiproton beam line

GBAR Decelerator

- 100 keV p pulse 300 ns (1.3 m)
- 4π mm mrad

- GBAR decelerator
 - Drift tube with –HV with fast-switching when pbar beam is in the tube
 - Higher efficiency and mono-energy expected compared with Degrading foil
 - With 100keV \rightarrow 1keV deceleration, emittance is increased about 10 times

- Produced antihydrogen is detected above 3σ (which is **1**st milestone)
- About 6.8×10^6 oPs (5×10^7 e⁺) and 3×10^6 pbar
- (First) production of antihydrogen by charge exchange between o-Ps and antiproton beam
- higher intensity with better emittance by pbar trap required \overline{H}^+ production (2nd milestone) 2024-11-14 Beam Utilizations

Antiproton trap

2000

- Penning-malmberg trap (5T; 7T max) for antiproton beam reprocessing
- Function : Trapping, cooling, compression, acceleration, bunching and accumulation
- Goal : Producing antiproton beam with good beam parameters (higher intensity with accumulation, good phase-space & time spread for double charge reaction, small energy spread, etc)
- Injection and extraction simulation by WARP has been developed (Kyoung-Hun Yoo et al 2022 JINST 17 T10003)

26th International Conference on Accelerators and Beam Utilizations

Antiproton trap installation (2023)

Antiproton trap operation

Trapping efficiency : 60% of ELENA injection Prelimina Reprocessed beam from trap : Without RW RW ~ $5x10^{6}$ #($\bar{p}/2min$) 6MHz 10V, 30s Loss Montior Event Rate FADCT 000870 20231105 evrec.root ampl : 18.62 ±0.54 Lifetime ~5x 2min τ: 577.79 ±60.19 Number of e on Number of e on MCP: 1.4E+7 MCP: 1.8E+7 LL ar Gold and the Maller of A -FWHM x = 8.29 mmFWHM v = 9.32 mm

SUMMARY

- Many efforts are given to study fundamental property of antimatter with possible CPT test
- Deceleration, Cooling and Trapping is important technology for precision measurement
- GBAR aims to make ~10uK anti-hydrogen for WEP test below 1% by free-falling antihydrogen in terrestrial gravitational field
- GBAR produces antihydrogen as first milestone and has improved antiproton beam line and positron beam line for antihydrogen ion production as second milestone

THANK YOU VERY MUCH 감사합니다

BACKUP

Contents

- Introduction
- Overview
- Antiproton beam line
- Positron beam line
- Production to freefall
- Quantum bouncing
- Summary

Low energy Antiproton beam facility

Production : Linac4(H⁻) → Booster(H⁻) → PS(p, 26GeV/c) → iridium target $\rightarrow \bar{p}$ (3.5GeV/c)

• Cooling : 3.5GeV/c \rightarrow 100MeV/c \rightarrow 100keV