Development of High-Precision Beam Position Monitor for the Korea-4GSR project

Siwon Jang, on behalf of Beam Diagnostics Group

4GSR Beam Diagnostics Group, PAL

Contents

- 1. Introduction
- 2. 4GSR BPM development for Korea 4GSR
- 3. Beam test results at PLS-II Storage ring
- 4. Summary

Introduction

Introduction

A requirement of new Beam position monitor system for Korea 4GSR

High brilliance 🖒

Small beam size

\rightarrow Precise & stable orbit control with sub μ m resolution

For the fourth generation storage ring, it's more precise, more accurate, and fast processing beam diagnostic devices are required.

Development of High-Precision Beam Position Monitor for the Korea-4GSR project, Siwon Jang, 14th Nov. 2024, ICABU2024, Pohang, S.Korea Page 4

Introduction

Purpose of Beam test at PLS-II Storage ring with 4GSR BPM pick-up

- Validation of Prototype Performance: Conducting beam tests in the PLS-II storage ring to evaluate the performance of the 4GSR BPM pick-up prototypes.
- Beam Stability Analysis: Ensuring that the BPM design minimizes longitudinal wake impedance to reduce heating an d beam instability. Direct comparison is challenging due to the different chamber sizes between PLS-II and 4GSR.
- **Real-world Comparison**: Comparing results from the PLS-II tests with expected outcomes for the 4GSR project to ass ess the prototype's effectiveness.
- **Custom BPM Test Installation**: Due to differences in the beam pipe's inner diameter between the PLS-II and 4GSR de signs, a new test BPM was created and installed to match the dummy chamber specifications in cell 7.
- **Resolution Measurement**: Testing aims to measure and optimize beam position resolution, aiding in finalizing the 4G SR BPM pick-up design before mass production.

4GSR BPM development for Korea 4GSR

4GSR Button BPM development

Development strategy of 4GSR Beam Position Monitor

Key Points of 4GSR BPM Pick-up Design:

- 1. Minimize longitudinal wakefields.
- 2. Address challenges with insulator materials (e.g., SiO2).
- 3. Suppress ringing signals within 2 ns for BbB feedback.
- 4. Ensure impedance matching for signal efficiency.
- 5. Avoid trapped modes in button gaps.
- 6. Enhance signal sensitivity for higher resolution.
- 7. Optimize signal strength based on bunch length.

Design Considerations:

- Small Button Head: Reduces wakefields but lowers signal strength.
- Fixed Chamber Design: Set by the vacuum group, limiting modifications.
- Geometry:
- Storage Ring: Octagonal shape.
- Booster Ring: Round shape.

 SiO_2 Glass & Al2O3 Ceramic Feedthrough antenna BPM for 4GSR

Development of 4GSR BPM Pick-up

Fabrication of Button pick-up for 4GSR BPM

Two BPM pickup antennas have been developed for the 4GSR project: 1. **SiO2 BPM**:

- Uses a SiO2 glass insulator (dielectric constant: 4).
- Shifts longitudinal wake impedance to higher frequencies, reducing thermal loss and improving signal clarity.
- Composed of molybdenum pins and housed in ASTM-F15 material.

2. AI2O3 BPM:

- Features a cone-shaped design with an Al2O3 insulator (dielectric c onstant: 9.9).
- Optimized to perform similarly to the SiO2 BPM despite its higher di electric constant.
- Contains titanium pins and is enclosed in SUS316 stainless steel.

Optimization:

• Extensive 3D simulations were used to minimize ringing and enhance bea m position resolution.

Proto-type Fabrication

TDR & Tolerance Measurement of 4GSR BPM Pick-up Antenna

TDR & Tolerance Measurement of 4GSR BPM Pick-up Antenna

• Purpose: TDR (Time Domain Reflectometry) is used to measure impedance and dete ct discontinuities in BPM structures, providing a method to calculate capacitance. Tolerance is most important points for mass production of Pick-up antenna. We measu red all of proto-type pick-up tolerance and right table shows sampled results.

• **TDR measurement method**: A fast-rise time pulse is sent along the transmission line, and the reflections are analyzed. Capacitance C is calculated using the time delay between the transmitted and reflected signals, along with the characteristic impedance of the transmission line.

• Measurement Results:

• SiO2 BPM: Expected capacitance \approx 1.5 pF; good agreement between simulation and measurement, showing a small standard deviation.

• Al2O3 BPM: Expected capacitance \approx 4 pF; meets specifications but shows wider stan dard deviation due to manufacturing challenges.

• Challenges: While precision machining of the Al2O3 BPM pick-up can be improved w ith additional production cost, maintaining concentricity after brazing has proven chall enging, even in cases like SOLEIL. Additionally, due to the structural limitations of havi ng high capacitance, the SiO2 pick-up design demonstrates superior signal sensitivity c ompared to the Al2O3 design.

	0.04 (0.06 0.08 0.: Time,	1 0.12 / ns	. 0.14 (0.16 0.18	0.2	臣 30 20 10 0	40 45	50 Distanc	55 60 e [mm]	65	70
Antenna	Pin Ant	tenna Diamete	er		Flange	Outer Dia	meter		Flange	Welding ri	pple Diar	neter
Number	Me	asurements	4	Average	Me	easuremen	ts	Average	Me	asurement	s	Average
3	6	6	6	6.00	7.67	7.67	7.67	7.67	13.67	13.67	13.66	13.67
14	6.01	6	6.01	6.01	7.68	7.68	7.69	7.68	13.67	13.69	13.68	13.68
28	5.99	6.01	6.01	6.00	7.67	7.67	7.67	7.67	13.68	13.67	13.68	13.68
39	6	6.01	6	6.00	7.68	7.67	7.68	7.68	13.67	13.68	13.68	13.68
41	6	6	6.01	6.00	7.68	7.66	7.67	7.67	13.68	13.69	13.67	13.68
Average (mm)			1	6.00				7.67				13.68
STD (mm)		SiO2		0.002				0.01				0.005
STD (%)				0.04				0.07				0.04

Antenna	Pin Anteni	na Diamete	er		Flange	Outer Diar	neter		Flange	neter		
Number	Me	Measurements		Average	Me	asuremen	ts	Average	Me	asurements	;	Average
2	5.96	5.96	5.96	5.96	10.3	10.29	10.3	10.30	13.69	13.7	13.69	13.69
7	5.99	5.99	5.99	5.99	10.31	10.3	10.31	10.31	13.74	13.73	13.74	13.74
13	5.96	5.97	5.96	5.96	10.33	10.33	10.32	10.33	13.68	13.75	13.73	13.72
19	6	5.98	5.98	5.99	10.28	10.3	10.27	10.28	13.66	13.68	13.7	13.68
23	5.95	5.95	5.96	5.95	10.29	10.28	10.27	10.28	13.69	13.69	13.69	13.69
Average (mm)			5.97				10.30				13.70
STD (mm)		AI2O3		0.01				0.02				0.02
STD (%)				0.25				0.16				0.15

Beam test results at PLS-II Storage ring

Beam Tests of 4GSR BPM Prototypes in PLS-II Storage Ring

Preparation for Beam Tests

- **Objective**: Conduct beam tests using prototype antennas in PLS-II to evalu ate performance.
- **Constraint**: Reducing the inner diameter to 4GSR design size could increas e impedance and cause beam instability.
- **Solution**: Manufacture and install a new test BPM matching the dummy ch amber specifications in cell 7.
- Simulation & Results:
- CST simulations show the SiO2 antenna provides ~50% stronger output sig nals compared to Al2O3.
- 12 BPM pick-ups installed in sets of three (SiO2, Al2O3, SiO2), spaced 10 c m apart.
- Analysis Requirement: Compare key parameters of PLS-II and 4GSR storag e rings to align expectations and test results.
- Trial of New Cables for 4GSR BPM: New cables were tested and installed with phase matching optimized to within 20 ps to reduce beam position me asurement errors. The flexible cables allowed for seamless installation from BPM to electronics, facilitating beam tests.

Beam Tests of 4GSR BPM Prototypes in PLS-II Storage Ring

Installation of test BPM at PLS-II

Inside Tunnel at #7 Cell Straight section

Control shed at #7 Cell

Development of High-Precision Beam Position Monitor for the Korea-4GSR project, Siwon Jang, 14th Nov. 2024, ICABU2024, Pohang, S.Korea Page 12

Beam Tests results of 4GSR BPM Prototypes in PLS-II Storage Ring

Signal waveform of test BPMs at PLS-II

File	Edit	Vertical	Horiz/Acq	Trig Di:	splay Cursors	Measure	Mask Math	MyScope	Analyze	Utilities Help	•	DP071604S)	Tek	_	X
	 			BP	PM1	- p	ort	2 si	gn	al (Si	i O2)				
	U) **** . v**			3P	M2 -		ort 2	sic		U(Al	203)	an a			
					99 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2			(International Providence	leelineingente		And International		en de perfectionen alternetionen		
				3P	M3 -	- p c	ort 2	sig	gna	ıl (Si	02)	nd path is a binnear			
	C1 : C2 : C3 :	500.0mV/ 500.0m (500.0mV/	div ! Dffset:40.0i div !	50Ω ⊑w:1 nV 50Ω 50Ω ⊑w:1	6.0G B <mark>w</mark> :16.0G 6.0G					▲ C1 / -1.	49V	100.0ns/div Run 141 acqs Auto August	50.0G S/s Sample R 20, 2024	IT 1.0 L:1.0M 01:3	ps/ 4:11

Camshaft signal figure

Beam Tests results of 4GSR BPM Prototypes in PLS-II Storage Ring

Signal waveform of test BPMs at PLS-II

File	Edit	Vertical	Horiz/Acq	Trig Disp	ay Cursors	Measure M	Mask Math	MyScope	Analyze	Utilities	Help		DPO71604SX	Tek	
				BP	M1	— pc	ort 2	2 si	gna	al (SiO	2)			
1			edi da manda dan Ja Kari kuran da ma			n la ser a construction de la cons La construction de la construction d	<mark>s en les contrations de s</mark> Manification (1996)	nin nin nin nin nin Selationia (nissi)	erangan di paran Milandan di paran	nni halan aran aran Aran halan aran aran	<mark>inel Antonianes (</mark> Inel Antonianes ()	nationalise Militärinen	nge pås konten plas (p. 193		a <mark>d</mark> a bilatan darika sa k <mark>Marakan jarah karangan</mark>
									المراجعة والمراجع						
				3PN	/12 –	- po	rt 2	Sig	jna	1 (<i>(</i> 4	120 1414-01-01-01-01-01-01-01-01-01-01-01-01-01-)3) 	Sectored to block to stall the	in an	
3	lad baseli missioni Ba			and and well-rough hydrodynau yw far yw		ing a Contraction of the	eleteren den den Instalanderen meter		i de la d Na section de la declaración de		an parang ng mang ng m Ng mang ng mang	nin panana da kana Mahamada da kana	n ja han sa para para sa	an ha kanaka sa	la la casti print d'escara La casti per presenti pet
				BPN	13 -	- po	rt 2	sig	gna	d (SiO2	2)			
								· · · +		in the second se					
	C1 C2 C3 C3	500.0mV/ 500.0m (500.0mV/	div s Offset:40.0r div s	50Ω Β _W :16. nV 50Ω Β 50Ω Β _W :16.	0G w:16.0G					A' C1	∫-1.49V	14 R 14	00.0ns/div un : 41 acqs	50.0G S/s Sample F	IT 1.0ps/
	C1	500.0mV/ 500.0m (500.0m (div 9 Offset:40.0r div 9	50Ω ⊑w:16. mV 50Ω ⊑ 50Ω ⊑w:16.	DG /w:16.0G DG			<u> </u>	<u> </u>	A' C1	∫ -1.49V	110 R 14 A	00.0ns/div un f 11 acqs uto August	50.0G S/s Sample F 20, 2024	IT 1.0ps/ :L:1.0M 01:34:11

Camshaft signal figure for BPM3 with SiO2

 New cable was able to manage approximately under 2.5mm tolerance of length delay matched under 30,000mm long cable assembly in an array of 4 sets

Beam Position Resolution Measurements

Turn by Turn(TbT) BPM Data Acquisition during 3.5 million turns

- System & Synchronization:
- Beam position resolution measured using the Libera Brilliance+ system.
- Libera Brilliance+ synchronized with the master oscillator and trigger signal fro m the 7th cell of the PLS-II storage ring.
- Three BPMs confirmed synchronized via BPM electronics.
- Data Collection:
- 1000 TbT data points collected and repeated 3500 times, resulting in 3.5 million data turns.
- Captured stabilized beam orbit and beam position oscillations during top-up inj ection in both X and Y directions.
- Analysis & Results:
- Standard deviation of beam trajectory in X and Y directions calculated for stabili ty assessment.
- Beam positions included offsets due to installation in the dummy chamber and challenges in performing Beam-Based Alignment (BBA).

Beam Position Resolution Measurements

Position residual calculation by using three 4GSR button BPMs with SVD method

Predicted position(ADC counts) for BPM1-Y was calculated as follow equation,

- Predicted position of BPM1-Y = a1*BPM2-Y+ a2*BPM3-Y+a3*BPM1-X+ a4*BPM2-X+ a5*BPM3-X +a6*BPM1-Sum+ a7*BPM2-Sum+a8*BPM3-Sum+ a9
- Residual of BPM1-Y = Measured BPM1-Y Predicted BPM1-Y
- The beam position resolution proportional to 1/(beam charge).

Beam Position Resolution of BPM1-Y

SiO2 BPM1-Y with 3.5M turns TbT data with 300mA Top-up operation of PLS-II

5.5

2000

4000

6000

6

6.5

×10⁵

= 1.08 µm x 300mA/400mA = 0.81 µm @ 400mA exp.

Summary

Project Overview:

• The Korean 4GSR project in Ochang is under construction with a target completion by 2027.

Prototype Development:

- A prototype pick-up antenna for 4GSR BPM was developed.
- TDR measurements and beam position resolution tests conducted at the PLS-II storage ring using a specially designed test BPM chamber.

Beam Test Results:

• Beam position resolution measured using turn-by-turn (TbT) data, achieving resolutions between 1 to 2.7 micrometers.

Next Steps:

- Finalize the pick-up antenna design based on test results.
- Plan mass production to align with the project completion target of 2027.

Frank you

Development of High-Precision Beam Position Monitor for the Korea-4GSR project, Siwon Jang, 14th Nov. 2024, ICABU2024, Pohang, S.Korea Page 19