Muon linac for the J-PARC Company muon g-2/EDM experiment KEK, Accelerator Lab., Masashi Otani

on behalf of E34 muon linac group

The muon g-2/EDM experiment at J-PARC (E34) aims to measure muon g-2 and EDM with unprecedented low-emittance muon beam realized by acceleration of thermal muons. The muon linac accelerates muons from thermal energy (25 meV) to 212 MeV with electro-static extraction and four different radio-frequency cavity: RFQ, IH-DTL, DAW-CCL, and DLS. We succeeded in accelerating muons using the radio-frequency accelerator for the first time, and are now fabricating actual acceleration cavities. In this poster, current status of the developments of will be presented.

Introduction

- Verification of the measured value of the muon anomalous magnetic (g-2) is an urgent issue [1, 2].
- J-PARC E34 experiment [3] aims to measure muon g-2 with completely different way than previous experiments using unprecedented low-emittance muon beam.

Muon linac overview

- Low-emittance beam realized by acceleration of thermal muon.
- Less emittance growth & loss is required to the linac to satisfy the requirement.
- First muon acceleration had been realized by an RFQ [4-8].
- Linac dedicated muon has been developed based on this proven technology.

212 Energy [MeV] intensity [/s] 106 repetition [Hz] Pulse [ns] 10 1.5 norm. ε_{t} $[\pi \text{ mm mrad}]$ 0.1 Δp [%]

324

RFQ (Radio-frequency quadrupole)

- The J-PARC H⁻ linac spare will be used.
- Muon acceleration is confirmed by the simulation[9]
- High power test was done and ready for acceleration.

		H-	μ	
Trig'd -3.6800µs @ 1.040 V 0.000µs -170.0mV 0.13.680µs @ 0.1210 V 0.000µs -170.0mV 0.000µs -170.	Particle mass (MeV/c²)	939	10	
	Intervane voltage (kV)	83	9.3	
	Power dissipation (kW)	330	4.2	
	Input energy (keV)	50	5.6	
1 500mV Q 2 500mV Q 4.00µs 2.506S/s 1 ∫ 1 Jul 2015 3 100mV Q 11.88000µs 1M points 660mV 13:18:33	Output energy (MeV)	3	0.3	
Deady for a col				

Ready tor acceleration

IH-DTL (Interdigital H-mode drift tube linac)

- Designed using the alternative phase focusing scheme, to realize higher efficiency [10].
- The fabrication scheme and performance were confirmed with proto-type [11].
 The real IH-DTL was designed and fabricated
- based on the experiences with the proto-type. H-power operation was demonstrated.

f₀ [MHz] W_{in} [MeV] 0.337 W_{out} [MeV] 4.26 Cavity length [m] 1.32 # of cells Bore radius [mm] -44 ~ 48 synch. phase [deg.] Max. E_0 [MV/m] ZTT $[M\Omega/m]$ Max. surface field $(2.0 E_k)$ [MV/m] 310 Power [kW]

Ready for acceleration

DAW-CCL (Disk and washer coupled-cell linac)

- Designed to cover wide range of velocity (β = 0.3-0.7) [12].
 The Al cold model was fabricated and tested to confirm the design.
- The Ist accelerator tank was fabricated and achieved required performance.

f ₀ [MHz]	1296
W _{in} [MeV]	4.26
W _{out} [MeV]	41.4
Length [m]	16.15
# of tanks	14
# of modules	3
# of tanks / module	4, 5, 5
# of cells / tank	11
Bore radius [mm]	12
Sync. phase [deg]	-30
E_0 [MV/m]	5.6
ZTT [MΩ/m]	18.6 ~ 62.7
Max. field [MV/m]	28.9 (0.9 E _k)
Max. power / tank[kW]	420

Proof-of-principle completed.

DLS (disk-loaded structure)

- Establish muon-dedicated design scheme $(\beta = 0.7-0.9)$ and finished quasi-constant gradient design [13].
- Proto-type cells and bridge couplers were fabricated and achieved required

f₀ [MHz] 2592 41.4 W_{in} [MeV] 212.4 W_{out} [MeV] Section length [m] # of acc. tubes # of regular cells / tube 63, 63, 60, 60 Iris aperture [mm] 22.6 ~ 26.4 Synch. phase [deg.] Max. E_0 [MV/m] 32.2 ~ 57.0 $Z [M\Omega/m]$ Phase shift [rad] Max. power* / tube [MW]

Proof-of-principle completed.

(Low-level radiofrequency)

- Compact design using RFSoC
- Finished conceptual design and evaluated the digitizer (AMC574) performance.
 - It satisfies requirement for RFQ and IH-DTL

evaluating performance

Modulator PS

- MARX power supply is designed for IH-DTL
- Operation scheme is demonstrated by proto.

Finish design and proto-typing

EPICS-based control system is being designed and developed.

Start developments

References

- [1] Phys. Rev. Lett. 126 (2021) 141801 Phys. Rev. Lett. 131 (2023) 161802 [2] Physics Reports 887 (2020) I-166 [3] PTEP 2019 (2019) 053C02
- [4] Phys. Rev. AB 24 (2021) 033403
- [5] Phys. Rev. AB 21 (2018) 050101 [6] NIMA 899 (2018) 22-27 [7] Phys. Rev. AB, 23 (2020) 022804 [8] arXiv: 2410.11367
- [9] Proc. of IPAC2015, p. 3801-3803 [10] Phys. Rev. AB 19 (2016) 040101
- [11] Phys. Rev. AB 25 (2022) 110101 [12] J. Phys. Conf. Ser. 1350 (2019) 012097 [13] J. Phys. :Conf. Ser. 2420 (2023) 012038
- This work is supported by JSPS KAKENHI (Grant Numbers 25800164, 15H03666, 15H05742, 16H03987, 16J07784, 18H03707, 18J22129, 19J21763, 20J21440, 20H05625, 21K18630, 21H05088, 22H00141), JST FOREST Program (Gran-Number JPMJFR2 I 20), the natural science grant of the Mitsubishi Foundation, a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

