PAL-EUV Beam Dynamics study

Jaehyun Kim

Pohang Accelerator Laboratory, POSTECH

1

Outline

PAL-EUV booster

- Current design
- Alternative design (preliminary)
- Comparison

PAL-EUV storage ring

- Current design
- Alternative design (preliminary)
- Comparison
- Summary

Motivation

- PAL-EUV is a compact size accelerator complex consists of gun, 20 MeV linac, 22.2 m booster and 36.0 m – 400 MeV storage ring
- Although it has compact size, its nonlinear property is as strong as a typical 4GSR machine (e.g. small dynamic aperture, small momentum aperture)
- This study investigates dynamic property of current PAL-EUV design and explores alternative designs providing better nonlinearity and robustness
- Design of compact size and low energy storage ring is somewhat delicate due to
 - Long damping time (damping time $\propto \frac{1}{F^3}$)
 - Short Touschek lifetime (Touschek lifetime $\propto E^3$)
 - Strong dipole edge-focusing effect
 - Dense arrangement of magnets and possible strong cross-talk

PAL-EUV booster

- Current design
- Alternative design (preliminary)
- Comparison

PAL-EUV booster (current design)

4

	Value
)	20 - 400
ce (m)	22.20
mittance (nm)	1.75
	4.84 / 3.66
maticity (H <i>,</i> V)	-11.2/ -15.7
(corrected)	1, 1
gpartition	2.0459
compaction	$2.798 imes 10^{-2}$
d (σ _δ) 400 MeV	$\begin{array}{c} \textbf{0.019}\times \textbf{10^{-3}} \text{ /} \\ \textbf{0.389}\times \textbf{10^{-3}} \end{array}$
er turn (keV) 00 MeV	0.0 / 1.4
age (keV)	70
e (H/V/Z) (ms) 400 MeV	166066 / 339759 / 356113 20.76 / 42.47 / 44.51

PAL-EUV booster alternative design (preliminary)

5

@ 20 MeV / 4

	Value
)	20 - 400
ce (m)	34.680
mittance (nm)	30.96
	2.42, 1.38
maticity (H,V)	-2.1, -1.8
(corrected)	1, 1
gpartition	1.648
compaction	0.1408
d (σ _δ) 400 MeV	$\begin{array}{c} \textbf{0.014}\times \textbf{10}^{-3} \text{ /} \\ \textbf{0.285}\times \textbf{10}^{-3} \end{array}$
er turn (keV) 00 MeV	0.0 / 1.5
age (keV)	70
e (H/V/Z) (ms) 400 MeV	450494 / 499538 / 264147 56.31 / 62.44 / 33.02

Comparison on lattice parameters and magnets

Lattice parameters

Parameters	Current design	Alternative design
Energy (MeV)	20 - 400	20 - 400
Circumference (m)	22.20	34.680
Equilibrium emittance (nm) @400 MeV	1.75	30.96
Tunes (H,V)	4.84 / 3.66	2.42, 1.38
Natural chromaticity (H,V)	-11.2/ -15.7	-2.1, -1.8
Chromaticity (corrected) (H,V)	1, 1	1, 1
Hor. Damping partition	2.0459	1.648
Momentum compaction	$2.798 imes \mathbf{10^{-2}}$	0.1408
Energy spread (σ_{δ}) @ 20 MeV / 400 MeV	$0.019 imes 10^{-3}$ / $0.389 imes 10^{-3}$	$\begin{array}{c} \textbf{0.014}\times \textbf{10^{-3}} \text{ /} \\ \textbf{0.285}\times \textbf{10^{-3}} \end{array}$
Energy loss per turn (keV) @20 MeV / 400 MeV	0.0 / 1.4	0.0 / 1.5
Main RF voltage (keV)	70	70
Damping time (H/V/Z) (ms) @ 20 MeV / 400 MeV	166066 / 339759 / 356113 20.76 / 42.47 / 44.51	450494 / 499538 / 264147 56.31 / 62.44 / 33.02

Magnet specifications

Current design

Туре	EA	Length	Max. strength
Bend (combined functi on of bend-quad-sext)	12	0.85 m	B0 = 0.822 [T] K1 = -3.448 [1/m ⁻²] K2 = -21.576 [1/m ⁻³]
16 cm quad	14	0.16 m	K1 = 20.30 [1/m ⁻²]
6 cm quad	8	0.06 m	K1 = 4.52 $[1/m^{-2}]$
Sext	16	0.04 m	K2 = 1116.4 $[1/m^{-3}]$

Alternative design

Туре	EA	Length	Max. strength
Bend (combined functi on of bend-quad)	12	0.80 m	B0 = 0.874 [T] K1 = -0.260 [1/m ⁻²]
16 cm quad*	18	0.16 m	K1 = 3.70 $[1/m^{-2}]$
Sext*	12	0.04 m	K2 = -36.9 $[1/m^{-3}]$

*reusable

6

-Normalized strengths are in MAD unit

Comparison on dynamic aperture

Random errors on magnet misalignment (rms value, 2-sigma cut used): 30 um in H/V , 250 um in L

Random errors on magnet misalignment (rms value, 2-sigma cut used): 300 um in H/V , 2500 um in L

- turn = 4096, rf on, sr on, no physical aperture used
- Correction (i.g., orbit correction, LOCO) is not applied for each seed
- ✤ 100 error seeds
- The new design rarely reduces for the error which means it is much robust for the error.
- * For original lattice, only 3 error seeds have a stable dynamic aperture, for new lattice, all 100 error seeds have it. 7

Comparison on momentum aperture

- Turn = 8192, rf on, sr on, no physical aperture used
- Charge = 10 pC, Rf voltage = 70 KeV, rf frequency ~ 500 MHz, coupling = 10%, IBS effect not considered.
- * Ideal local momentum acceptance is much bigger for new design than that of original design.
- * Large local momentum acceptance results in long Touschek lifetime for the new design case.

Ideal lattice	Touschek Lifetime [h]
Original	0.11
New	20916.56

l design. gn case.

↔PAL-EUV storage ring

- Current design
- Alternative design (preliminary)
- Comparison

PAL-EUV SR parameters

rs	Value
eV)	400
ence (m)	36.0
(nm)	1.18
()	7.15, 3.14
romaticity (H,V)	-10.7, -16.9
ity (corrected)	1,1
oing partition	1.86
m compaction	$1.036 imes 10^{-2}$
read (σ_{δ})	$0.389 imes 10^{-3}$
s per turn (keV)	1.7
ime (H/V/Z) (ms)	31.14 / 58.07 / 51.15
ent (mA)	140

PAL-EUV SR alternative design-1 (preliminary)

4-bend achromat

rs	Value
eV)	400
ence (m)	36.0
(nm)	3.51
()	6.22 / 3.34
romaticity (H,V)	-7.2, -8.4
ity (corrected)	1, 1
oing partition	1.696
m compaction	$1.1 imes 10^{-2}$
read (σ_δ)	$0.467 imes10^{-3}$
s per turn (keV)	3.0
ime (H/V/Z) (ms)	20.40 / 32.41 / 22.97

PAL-EUV SR alternative design-2 (preliminary)

Double-bend achromat

rs	Value
eV)	400
ence (m)	36.0
(nm)	11.10
()	3.86 / 2.73
romaticity (H,V)	-7.7, -5.6
ity (corrected)	1, 1
oing partition	1.29
m compaction	$2.294 imes 10^{-2}$
read (σ_δ)	$0.314 imes10^{-3}$
s per turn (keV)	1.8
ime (H/V/Z) (ms)	47.76 / 54.02 / 28.90

Comparison on lattice parameters

Lattice parameters

Parameters	Current design (5BA)	Alternative design-1 (4BA)	Alternative design-2 (DBA)
Energy (MeV)	400	400	400
Circumference (m)	36.0	36.0	36.0
Emittance (nm)	1.18	3.51	11.10
Tunes (H,V)	7.15, 3.14	6.22 / 3.34	3.86 / 2.73
Natural chromaticity (H,V)	-10.7, -16.9	-7.2, -8.4	-7.7, -5.6
Chromaticity (corrected) (H,V)	1,1	1, 1	1, 1
Hor. Damping partition	1.86	1.696	1.29
Momentum compaction	$1.036 imes10^{-2}$	$1.1 imes 10^{-2}$	$2.294 imes 10^{-2}$
Energy spread (σ_{δ})	$0.389 imes 10^{-3}$	$0.467 imes10^{-3}$	$0.314 imes10^{-3}$
Energy loss per turn (keV)	1.7	3.0	1.8
Damping time (H/V/Z) (ms)	31.14 / 58.07 / 51.15	20.40 / 32.41 / 22.97	47.76 / 54.02 / 28.90

Comparison on magnets

Magnet specifications

Current design

Туре	EA	Length	Max. strength
Bend (combined functi on of bend-quad)	20	0.43 m	B0 = 0.974 [T] K1 = -5.59 [1/m ⁻²]
10 cm quad	56	0.10 m	K1 = 23.74 $[1/m^{-2}]$
Sext	64	0.05 m	K2 = 1818.81 $[1/m^{-3}]$

Alternative design-1 (4BA)

Туре	EA	Length	Max. strength
40 cm bend (combined function of bend-quad)	8	0.40 m	B0 = 1.747 [T] K1 = -7 [1/m ⁻²]
20 cm bend (combined function of bend-quad)	8	0.20 m	B0 = 1.747 [T] K1 = -6.39 [1/m ⁻²]
10 cm quad*	24	0.10 m	К1 = 23.68 [1/m ⁻²]
15 cm quad	24	0.15 m	K1 = 15.37 $[1/m^{-2}]$
Sext*	52	0.05 m	K2 = 1730.3 $[1/m^{-3}]$

Alternative design-2 (DBA)

Туре	EA	Length	Max. strength
Bend (combined function of bend-quad)	8	1.0 m	B0 = 1.047 [T] K1 = -0.7 [1/m ⁻²]
10 cm quad*	32	0.10 m	K1 = 18.20 $[1/m^{-2}]$
Sext*	32	0.05 m	K2 = 711.0 $[1/m^{-3}]$

*reusable

-Normalized strengths are in MAD unit

Comparison on dynamic aperture Alternative design-1 (4BA) **Current design** 5 Ideal Ideal 14 Maximum Maximum Minimum 4 12 Minimum 10 (mm) y 6 (mm) 8 1 2 0 0 -15 -10 10 -5 5 15 n -20 -30 -10 10 20 30 0 x (mm) x (mm)

Random errors on magnet misalignment (rms value, 2-sigma cut used): 30 um in H/V , 250 um in L

Random errors on magnet misalignment (rms value, 2-sigma cut used): 30 um in H/V , 250 um in L

- rf on, sr on, no physical aperture used
- ✤ 100 error seeds, turn = 4096
- Correction (i.g., orbit correction, LOCO) is not applied for each seed
- The new design rarely reduces for the error which means it is much robust for the error.
- * For original lattice, only 24 error seeds have a stable dynamic aperture, for new lattice, all 100 error seeds have it.

POHANG ACCELERATOR LABORATORY

Turn = 1024, rf on, sr on, no physical aperture used

Charge = 10 pC, Rf voltage = 70 KeV, rf frequency ~ 500 MHz, coupling = 10%, IBS effect not considered.

- ✤ Ideal local momentum acceptance is much bigger for new design than that of original design.
- ***** Large local momentum acceptance results in long Touschek lifetime for the new design case.

lattice	Touschek Lifetime [h]	
ginal	26.49	
ew	1122.01	

l design. gn case.

Dipole edge-focusing and tune change

- Including dipole edge-focusing result in tune change in vertical plane •
- For a sector bend magnet (pole-face rotation angle = 0), edge focusing at each pole-face is described by a matrix R ٠

$$R = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{\tan(\psi)}{\rho} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

where $\psi = \kappa_1(\frac{g}{2})$

 ρ = Bending radius of central trajectory

g = Total gap of magnet

 κ_1 = An integral related to the extent of the fringing field of a bending magnet

-Current storage ring design has ρ = 1.3698 m, g = 0.024 m and κ_1 = 0.5 -Including dipole edge-focusing changes tune from $(v_x, v_y) = (7.152, 3.143)$ to $(v_x, v_y) = (7.152, 3.005)$

17

Tune adjustment is required after including effect of dipole edgefocusing, in order to restore dynamic aperture

22nd International Advisory Committee Meeting (November 13-14, 2023)

C = 36.0 m

18

C = 36.0 m

Summary

- Beam Dynamics study on current PAL-EUV lattice design and alternative designs are performed
- Still working on finding an alternative design which keeps current lattice arrangement
- Presented alternative designs aim for relaxed nonlinear properties and robustness against alignment/roll/field errors
- Magnet reusability is also considered
- Alternative design on booster is much more robust against errors, but it doesn't fit current 22.2 m geometry
- Alternative design-1 on storage ring can provide similar dynamic aperture to that of current design but can provide much longer Touschek lifetime

Thank you for your attention

