PAL-EUV Beam Dynamics study

Jaehyun Kim

Pohang Accelerator Laboratory, POSTECH

Outline

* PAL-EUV booster
- Current design
- Alternative design (preliminary)
- Comparison

* PAL-EUV storage ring

- Current design
- Alternative design (preliminary)
- Comparison
* Summary

Motivation

- PAL-EUV is a compact size accelerator complex consists of gun, 20 MeV linac, 22.2 m booster and $36.0 \mathrm{~m}-400 \mathrm{MeV}$ storage ring
- Although it has compact size, its nonlinear property is as strong as a typical 4GSR machine (e.g. small dynamic aperture, small momentum aperture)
- This study investigates dynamic property of current PAL-EUV design and explores alternative designs providing better nonlinearity and robustness
- Design of compact size and low energy storage ring is somewhat delicate due to
- Long damping time (damping time $\propto \frac{1}{E^{3}}$)
- Short Touschek lifetime (Touschek lifetime $\propto E^{3}$)
- Strong dipole edge-focusing effect
- Dense arrangement of magnets and possible strong cross-talk

※PAL-EUV booster

- Current design
- Alternative design (preliminary)
- Comparison

PAL-EUV booster (current design)

Parameters	Value
Energy (MeV)	20-400
Circumference (m)	22.20
Equilibrium emittance (nm) @ 400 MeV	1.75
Tunes (H,V)	4.84 / 3.66
Natural chromaticity (H, V)	-11.2/-15.7
Chromaticity (corrected) $(\mathrm{H}, \mathrm{~V})$	1, 1
Hor. Damping partition	2.0459
Momentum compaction	2.798×10^{-2}
Energy spread (σ_{δ}) @ $20 \mathrm{MeV} / 400 \mathrm{MeV}$	$\begin{gathered} 0.019 \times 10^{-3} / \\ 0.389 \times 10^{-3} \end{gathered}$
Energy loss per turn (keV) @ $20 \mathrm{MeV} / 400 \mathrm{MeV}$	$\begin{gathered} 0.0 / \\ 1.4 \end{gathered}$
Main RF voltage (keV)	70
Damping time ($\mathrm{H} / \mathrm{V} / \mathrm{Z}$) (ms) @ $20 \mathrm{MeV} / 400 \mathrm{MeV}$	$\begin{aligned} & 166066 / 339759 / 356113 \\ & 20.76 / 42.47 / 44.51 \end{aligned}$

PAL-EUV booster alternative design (preliminary)

Parameters	Value
Energy (MeV)	20-400
Circumference (m)	34.680
Equilibrium emittance (nm) @ 400 MeV	30.96
Tunes (H,V)	2.42, 1.38
Natural chromaticity (H, V)	-2.1, -1.8
Chromaticity (corrected) $(\mathrm{H}, \mathrm{~V})$	1, 1
Hor. Damping partition	1.648
Momentum compaction	0.1408
Energy spread (σ_{δ}) @ $20 \mathrm{MeV} / 400 \mathrm{MeV}$	$\begin{gathered} 0.014 \times 10^{-3} / \\ 0.285 \times 10^{-3} \end{gathered}$
Energy loss per turn (keV) @20 MeV / 400 MeV	$\begin{gathered} 0.0 / \\ 1.5 \end{gathered}$
Main RF voltage (keV)	70
Damping time ($\mathrm{H} / \mathrm{V} / \mathrm{Z}$) (ms) @ $20 \mathrm{MeV} / 400 \mathrm{MeV}$	$\begin{aligned} & 450494 / 499538 / 264147 \\ & 56.31 / 62.44 / 33.02 \end{aligned}$

Comparison on lattice parameters and magnets

Lattice parameters

Parameters	Current design	Alternative design
Energy (MeV)	20-400	20-400
Circumference (m)	22.20	34.680
Equilibrium emittance (nm) @ 400 MeV	1.75	30.96
Tunes (H, V)	4.84 / 3.66	2.42, 1.38
Natural chromaticity (H, V)	-11.2/-15.7	-2.1, -1.8
Chromaticity (corrected) $(\mathrm{H}, \mathrm{~V})$	1, 1	1, 1
Hor. Damping partition	2.0459	1.648
Momentum compaction	2.798×10^{-2}	0.1408
Energy spread (σ_{δ}) @ $20 \mathrm{MeV} / 400 \mathrm{MeV}$	$\begin{gathered} 0.019 \times 10^{-3} / \\ 0.389 \times 10^{-3} \end{gathered}$	$\begin{gathered} \hline 0.014 \times 10^{-3} / \\ 0.285 \times 10^{-3} \end{gathered}$
Energy loss per turn (keV) @ $20 \mathrm{MeV} / 400 \mathrm{MeV}$	$\begin{gathered} 0.0 / \\ 1.4 \end{gathered}$	$\begin{gathered} 0.0 / \\ 1.5 \end{gathered}$
Main RF voltage (keV)	70	70
Damping time ($\mathrm{H} / \mathrm{V} / \mathrm{Z}$) (ms) @ $20 \mathrm{MeV} / 400 \mathrm{MeV}$	$\begin{aligned} & 166066 / 339759 / 356113 \\ & 20.76 \text { / } 42.47 \text { / } 44.51 \end{aligned}$	$\begin{gathered} 450494 \text { / } 499538 \text { / } 264147 \\ 56.31 / 62.44 \text { / } 33.02 \end{gathered}$

Magnet specifications

Current design

Type	EA	Length	Max. strength
Bend (combined functi on of bend-quad-sext)	12	0.85 m	B0 $=0.822[\mathrm{~T}]$ K1 $=-3.448\left[1 / m^{-2}\right]$ K2 $=-21.576\left[1 / m^{-3}\right]$
16 cm quad	14	0.16 m	K1 $=20.30\left[1 / \mathrm{m}^{-2}\right]$
6 cm quad	8	0.06 m	K1 $=4.52\left[1 / \mathrm{m}^{-2}\right]$
Sext	16	0.04 m	K2 $=1116.4\left[1 / \mathrm{m}^{-3}\right]$

Alternative design

Type	EA	Length	Max. strength
Bend (combined functi on of bend-quad)	12	0.80 m	B0 $=0.874[\mathrm{~T}]$ K1 $=-0.260\left[1 / m^{-2}\right]$
16 cm quad* *	18	0.16 m	K1 $=3.70\left[1 / \mathrm{m}^{-2}\right]$
Sext *	12	0.04 m	K2 $=-36.9\left[1 / \mathrm{m}^{-3}\right]$

*reusable

Comparison on dynamic aperture

Random errors on magnet misalignment (rms value, 2-sigma cut used): 30 um in H/V, 250 um in L

Random errors on magnet misalignment (rms value, 2-sigma cut used):
300 um in H/V, 2500 um in L

* turn = 4096, rf on, sr on, no physical aperture used
* Correction (i.g., orbit correction, LOCO) is not applied for each seed
* 100 error seeds
* The new design rarely reduces for the error which means it is much robust for the error.
* For original lattice, only 3 error seeds have a stable dynamic aperture, for new lattice, all 100 error seeds have it.

Comparison on momentum aperture

Ideal lattice	Touschek Lifetime $[\mathrm{h}]$
Original	0.11
New	20916.56

* Turn = 8192, rf on, sr on, no physical aperture used
* Charge = 10 pC , Rf voltage = 70 KeV , rf frequency ~ 500 MHz , coupling = 10\%,

IBS effect not considered.

* Ideal local momentum acceptance is much bigger for new design than that of original design.
* Large local momentum acceptance results in long Touschek lifetime for the new design case.
*PAL-EUV storage ring
- Current design
- Alternative design (preliminary)
- Comparison

PAL-EUV SR parameters

Parameters	Value
Energy (MeV)	$\mathbf{4 0 0}$
Circumference (m)	$\mathbf{3 6 . 0}$
Emittance (nm)	$\mathbf{1 . 1 8}$
Tunes (H,V)	$\mathbf{7 . 1 5 , 3 . 1 4}$
Natural chromaticity (H,V)	$\mathbf{- 1 0 . 7 , - 1 6 . 9}$
Chromaticity (corrected) (H,V)	$\mathbf{1 , 1}$
Hor. Damping partition	$\mathbf{1 . 8 6}$
Momentum compaction	$\mathbf{1 . 0 3 6 \times 1 0 ^ { - 2 }}$
Energy spread (σ_{δ})	$\mathbf{0 . 3 8 9 \times 1 0 ^ { - 3 }}$
Energy loss per turn (keV)	$\mathbf{1 . 7}$
Damping time (H/V/Z) (ms)	$\mathbf{3 1 . 1 4 ~ / ~ 5 8 . 0 7 ~ / ~ 5 1 . 1 5 ~}$
Beam current (mA)	$\mathbf{1 4 0}$

PAL-EUV SR alternative design-1 (preliminary)

4-bend achromat

PAL-EUV SR alternative design-2 (preliminary)

Double-bend achromat

Lattice parameters

Parameters	Current design (5BA)	Alternative design-1 (4BA)	Alternative design-2 (DBA)
Energy (MeV)	400	400	400
Circumference (m)	36.0	36.0	36.0
Emittance (nm)	1.18	3.51	11.10
Tunes (H, V)	7.15, 3.14	6.22 / 3.34	3.86 / 2.73
Natural chromaticity (H, V)	-10.7, -16.9	-7.2, -8.4	-7.7, -5.6
Chromaticity (corrected) $(\mathrm{H}, \mathrm{~V})$	1,1	1, 1	1,1
Hor. Damping partition	1.86	1.696	1.29
Momentum compaction	1.036×10^{-2}	1.1×10^{-2}	2.294×10^{-2}
Energy spread (σ_{δ})	0.389×10^{-3}	0.467×10^{-3}	0.314×10^{-3}
Energy loss per turn (keV)	1.7	3.0	1.8
Damping time ($\mathrm{H} / \mathrm{V} / \mathrm{Z}$) (ms)	31.14 / 58.07 / 51.15	20.40 / 32.41 / 22.97	47.76 / 54.02 / 28.90

Magnet specifications

-Normalized strengths are in MAD unit

Type	EA	Length	Max. strength
Bend (combined functi on of bend-quad)	20	0.43 m	B0 $=0.974[\mathrm{~T}]$ K1 $=-5.59\left[1 / m^{-2}\right]$
10 cm quad	56	0.10 m	K1 $=23.74\left[1 / \mathrm{m}^{-2}\right]$
Sext	64	0.05 m	K2 $=1818.81\left[1 / \mathrm{m}^{-3}\right]$

Alternative design-1 (4BA)

Type	EA	Length	Max. strength
40 cm bend (combined function of bend-quad)	8	0.40 m	$\begin{gathered} \mathrm{B} 0=1.747[\mathrm{~T}] \\ \mathrm{K} 1=-7\left[1 / \mathrm{m}^{-2}\right] \end{gathered}$
20 cm bend (combined function of bend-quad)	8	0.20 m	$\begin{gathered} \mathrm{BO}=1.747[\mathrm{~T}] \\ \mathrm{K} 1=-6.39\left[1 / \mathrm{m}^{-2}\right] \end{gathered}$
10 cm quad*	24	0.10 m	$\mathrm{K} 1=23.68\left[1 / m^{-2}\right]$
15 cm quad	24	0.15 m	$\mathrm{K} 1=15.37$ [$1 / \mathrm{m}^{-2}$]
Sext*	52	0.05 m	$\mathrm{K} 2=1730.3\left[1 / \mathrm{m}^{-3}\right]$

Alternative design-2 (DBA)

Type	EA	Length	Max. strength
Bend (combined function of bend-quad)	8	1.0 m	$\mathrm{B0}=1.047[\mathrm{~T}]$ $\mathrm{K} 1=-0.7\left[1 / \mathrm{m}^{-2}\right]$
10 cm quad*	32	0.10 m	K1 $=18.20\left[1 / \mathrm{m}^{-2}\right]$
Sext*	32	0.05 m	K2 $=711.0\left[1 / \mathrm{m}^{-3}\right]$

[^0]

Random errors on magnet misalignment (rms value, 2-sigma cut used):
30 um in H/V , 250 um in L

Alternative design-1

 (4BA)

Random errors on magnet misalignment (rms value, 2-sigma cut used):
30 um in H/V, 250 um in L

* rf on, sr on, no physical aperture used
* 100 error seeds, turn = 4096
* Correction (i.g., orbit correction, LOCO) is not applied for each seed
* The new design rarely reduces for the error which means it is much robust for the error.
* For original lattice, only $\mathbf{2 4}$ error seeds have a stable dynamic aperture, for new lattice, all $\mathbf{1 0 0}$ error seeds have it.

Alternative design-1

Ideal lattice	Touschek Lifetime $[\mathrm{h}]$
Original	26.49
New	1122.01

* Turn = 1024, rf on, sr on, no physical aperture used
* Charge $=10 \mathrm{pC}$, Rf voltage $=70 \mathrm{KeV}$, rf frequency $\sim 500 \mathrm{MHz}$, coupling $=10 \%$,

IBS effect not considered.

* Ideal local momentum acceptance is much bigger for new design than that of original design.
* Large local momentum acceptance results in long Touschek lifetime for the new design case.

Dipole edge-focusing and tune change

- Including dipole edge-focusing result in tune change in vertical plane
- For a sector bend magnet (pole-face rotation angle $=0$), edge focusing at each pole-face is described by a matrix R

$$
R=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{\tan (\psi)}{\rho} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where $\psi=\kappa_{1}\left(\frac{g}{\rho}\right)$
$\rho=$ Bending radius of central trajectory
$g=$ Total gap of magnet
$\kappa_{1}=A n$ integral related to the extent of the fringing field of a bending magnet
-Current storage ring design has $\rho=1.3698 \mathrm{~m}, g=0.024 \mathrm{~m}$ and $\kappa_{1}=0.5$
-Including dipole edge-focusing changes tune from $\left(v_{x}, v_{y}\right)=(7.152,3.143)$ to $\left(v_{x}, v_{y}\right)=(7.152,3.005)$

Tune adjustment is required after including effect of dipole edgefocusing, in order to restore dynamic aperture

```
2D geometry
```

PAL-EUV booster

$C=22.2 \mathrm{~m}$

$\mathrm{C}=36.0 \mathrm{~m}$

$$
\mathrm{C}=34.68 \mathrm{~m}
$$

$\mathrm{C}=36.0 \mathrm{~m}$

$\mathrm{C}=36.0 \mathrm{~m}$

Summary

- Beam Dynamics study on current PAL-EUV lattice design and alternative designs are performed
- Still working on finding an alternative design which keeps current lattice arrangement
- Presented alternative designs aim for relaxed nonlinear properties and robustness against alignment/roll/field errors
- Magnet reusability is also considered
- Alternative design on booster is much more robust against errors, but it doesn’t fit current 22.2 m geometry
- Alternative design-1 on storage ring can provide similar dynamic aperture to that of current design but can provide much longer Touschek lifetime

Thank you for your attention

PAL POHANG accelerator labooatory

[^0]: *reusable

