PAL-XFEL 현황보고

허훈 부장 (XFEL 가속장치부) 엄인태 부장 (XFEL 빔라인부)

2023.10.12(목)

XFEL가속장치부 현황

2011

2017

2018

2019

2016

PAL-XFEL 발전 이력

Two-Color FEL 시연 ARTICLES photonics https://doi.org/10.1038/s41566-017-0029-8 • HX/SX 동시운전 시운전 Hard X-ray free-electron laser with femtosecondscale timing jitter • Atto-second R&D 시작 Heung-Sik Kang1*, Chang-Ki Min1, Hoon Heo1, Changbum Kim1, Haeryong Yang1, Gyujin Kim1, Inhyuk Nam¹, Soung Youl Baek¹, Hyo-Jin Choi¹, Geonyeong Mun¹, Byoung Ryul Park¹, Young Jin Suh¹, Dong Cheol Shin1, Jinyul Hu1, Juho Hong1, Seonghoon Jung1, Sang-Hee Kim1, KwangHoon Kim1, • 2nd Hard X-ray Line CDR 완성 Donghyun Na¹, Soung Soo Park¹, Yong Jung Park¹, Jang-Hui Han¹, Young Gyu Jung¹, Seong Hun Jeong¹, photonics Hong Gi Lee1, Sangbong Lee1, Sojeong Lee1, Woul-Woo Lee1, Bonggi Oh 1, Hyung Suck Suh1, Yong Woon Parc¹, Sung-Ju Park¹, Min Ho Kim¹, Nam-Suk Jung¹, Young-Chan Kim¹, Mong-Soo Lee¹, <mark>→ ● HX/SX</mark> branch line 개선 Bong-Ho Lee1, Chi-Won Sung1, Ik-Su Mok1, Jung-Moo Yang1, Chae-Soon Lee1, Hocheol Shin1, High-brightness self-seeded X-ray free-electron Ji Hwa Kim1, Yongsam Kim1, Jae Hyuk Lee1, Sang-Youn Park1, Jangwoo Kim 1, Jaeku Park1, Intae Eom¹, Seungyu Rah¹, Sunam Kim¹, Ki Hyun Nam¹, Jaehyun Park¹, Jaehun Park¹, Sangsoo Kim¹, • UED <mark>구축 시작</mark> laser covering the 3.5 keV to 14.6 keV range Soonam Kwon', Sang Han Park', Kyung Sook Kim', Hyojung Hyun', Seung Nam Kim', Seonghan Kim', Sun-min Hwang¹, Myong Jin Kim¹, Chae-yong Lim¹, Chung-Jong Yu¹, Bong-Soo Kim¹, Tai-Hee Kang¹, Kwang-Woo Kim1, Seung-Hwan Kim1, Hee-Seock Lee1, Heung-Soo Lee1, Ki-Hyeon Park1, Inhyuk Nam 01.4, Chang-Ki Min1.4, Bonggi Oh 01.4, Gyujin Kim1, Donghyun Na1, Young Jin Suh1, • 60 Hz User Service 개시 Haeryong Yang ¹, Myung Hoon Cho¹, Changbum Kim¹, Min-Jae Kim¹, Chi Hyun Shim¹, Jun Ho Ko¹, Tae-Yeong Koo1, Dong-Eon Kim1 and In Soo Ko2 Hoon Heo1, Jaehyun Park1, Jangwoo Kim 31, Sehan Park1, Gisu Park1, Seonghan Kim1, Sae Hwan Chun1, The hard X-ray free-electron laser at the Pohang Accelerator Laboratory (PAL-XFEL) in the Republic of Korea achieved sat-HyoJung Hyun¹, Jae Hyuk Lee ¹, Kyung Sook Kim¹, Intae Eom¹, Seungyu Rah¹, Deming Shu², uration of a 0.144 nm free-electron laser beam on 27 November 2016, making it the third hard X-ray free-electron laser in the world, following the demonstrations of the Linac Coherent Light Source (LCLS) and the SPring-8 Angstrom Compact Free Electron Laser (SACLA). The use of electron-beam-based alignment incorporating undulator radiation spectrum analysis has Kwang-Je Kim², Sergey Terentyev³, Vladimir Blank³, Yuri Shvyd'ko 02 M, Sang Jae Lee 11 and • 1st user experiment with Self Seeding FEL Heung-Sik Kang^{®1⊠} allowed reliable operation of PAL-XFEL with unprecedented temporal stability and dis-Jitter of Just 20 fs for the free-electron laser photon beam is consiste A self-seeded X-ray free-electron laser (XFEL) is a promising approach to realize bright, fully coherent free-electron laser (FEL) sources in the hard X-ray domain that have been a long-standing issue with longitudinal coherence remaining challenging. At the Pohang Accelerator Laboratory XFEL, we have demonstrated a hard X-ray self-seeded XFEL with a peak brightness of 3.2×10³⁵ photons s⁻¹ mm⁻² mrad⁻² 0.1% bandwidth (BW)⁻¹ at 9.7 keV. The bandwidth (0.19 eV) is about 1/70 times as wide Self Seeding FEL Commissioning emission (SASE), with substantial impr We could reach an excellent self-seeding performance at a photon energy of 3.5 keV (lowest) and 14.6 keV (highest) with the same stability as the 9.7 keV self-seeding. The bandwidth of the 14.6 keV seeded FEL was 0.32 eV, and the peak brightness was User Service 개시(6월) 1.3 × 10³⁵ photons s⁻¹ mm⁻¹ mrad⁻¹ 0.1%BW⁻¹. We show that the use of seeded FEL pulses with higher repr 14.5 keV SASE (11월) SX undulator 레이저룸 건설 구축완료 • 30 Hz 운전(5월 이후) SASE FEL Commissioning PAL-XFEL Project 시작

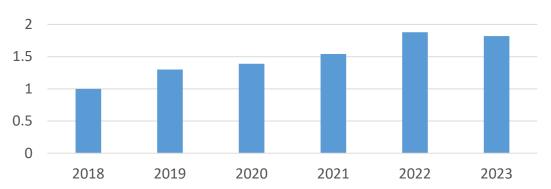
2020

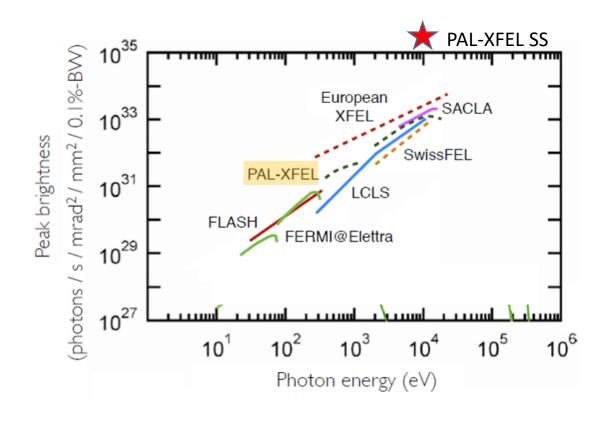
2021

2022

2023

운전 현황

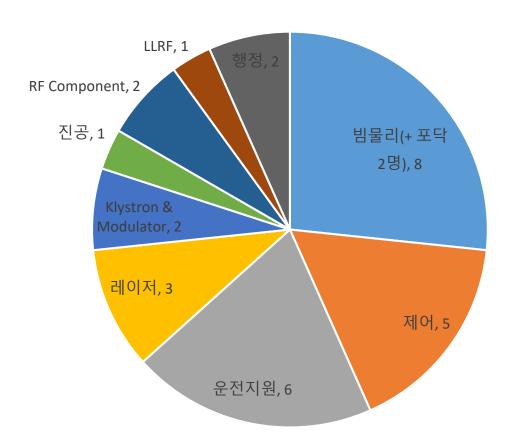

❖ FEL 성능 고도화 달성


- SASE FEL photon range 확대 (2.4 keV ~ 20 keV, 300 eV ~ 1 keV)
- SASE FEL pulse energy 향상 (E-loss 1~2 mJ/pulse)
- Self Seeding FEL 성능 고도화
- Two-color FEL 유저 서비스 개시
- HX/SX FEL 동시 운전 성능 확보

❖ FEL 성능 안정화 및 Energy Scan 기능 완성

- Long term FEL drift 특성 개선
- FEL 튜닝 최적화 및 편의성 향상
- SASE 및 Self Seeding FEL Energy scan 기능 제공

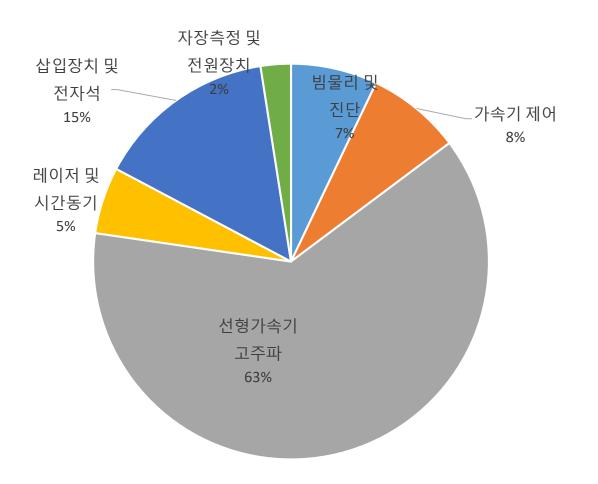
연평균 제공 HX FEL Pulse Energy [mJ]


XFEL가속장치부 조직 현황

❖ 가속기제어팀

- 가속기 운전 및 진단 제어장치 운용 및 R&D

❖ 선형가속기팀


- 레이저, RF, 진공 등 운용 및 R&D

예산 현황

❖ XFEL 가속장치부 운영 사업비

- 총 49.8억
- 별도 PAL-XFEL 전력료 예산: 50억

운전 성능 유지 현안

- ❖ 단기 소모성 고가 장치 예비품 확보 현황
- Klystron tube 예비품 (55대 운용 12대 예비)
- Thyratron tube (55대 운용 32대 예비)
- ❖ 운전 연수 10년 도래에 따른 장치 유지 보수 수요 증가 대책
- 모듈레이터 및 각종 전자석 등 고가 장납기 부품에 대한 장기적인 유지 보수 계획 마련 필요
- 부품 및 장치의 단종 경우 대체품 시험 중
- 공급 업체 변동 및 소멸의 경우 대체 업체 협업
- 단기적으로 단종 대비 예비품 확보 계속
- 장기적으로 유사 사양의 대체품 또는 업체 발굴

성능 개선 및 기타 현안

❖ 증설 및 R&D

- 2nd Hard X-ray Line 구축 준비 시작
- UED 관련 시설 유지 보수
- Atto-second SX-FEL R&D (SX undulator 레이저룸 및 시설 구축 중)

❖ 대외 협력

- LLRF 2023 유치 (10/22~10/27)
- Machine Learning workshop 유치 (2024 년)
- EPICS meeting 준비 (2024 년)

❖ 소내 협력

- 4GSR 구축 사업
- PAL-EUV commissioning 지원

XFEL빔라인부 현황

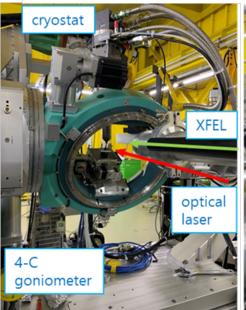
PAL-XFEL 빔라인장치

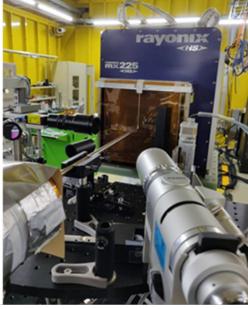
XSS (X-ray Scattering and Spectroscopy)

Instrumentations

Femtosecond X-ray Scattering (FXS)
Femtosecond X-ray Liquidography (FXL)
X-ray emission spectroscopies (XES)

Specifications


Focusing optics: Be CRL


2-circle and 4-circle diffractometers

Cryostream cryostat: 40 - 300 K

Sample chamber for vacuum and gas conditions

Liquid injector (100 um jet)

NCI (Nano Crystallography and coherent Imaging) SSS (Soft X-ray Scattering and Spectroscopy)

(Name Crystallography and concrete imagin

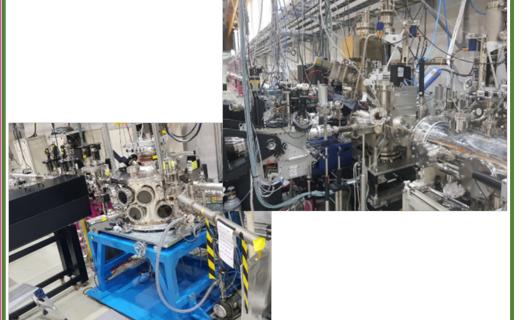
Instrumentations

Coherent X-ray Imaging / Scattering (CXI)
X-ray Absorption Near Edge Spectroscopy (XANES)
Serial Femtosecond Crystallography (SFX)
Wide angle X-ray scattering (WAXS)

Specifications

Focusing optics: KB mirrors

Dedicated sample chambers for CXI/SFX/XANES
with vacuum or He environment
tunable nanosecond laser for SFX experiments



Instruimentations

Resonant Soft X-ray Scattering (RSXS)
X-ray Absorption/Emission Spectroscopy (XAS/XES)
Fourier Transform Holography (FTH)

Specifications

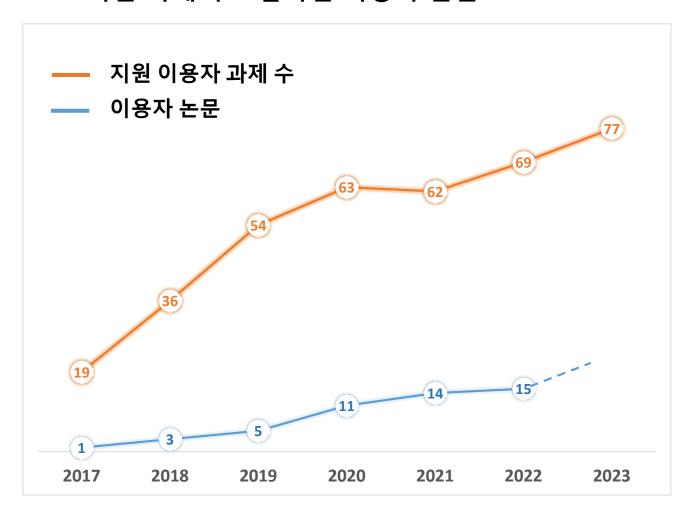
6-axis manipulator with cryostat (RSXS) VLS grating for 200 – 1200 eV (XAS/XES) Ion/electron time-of-flight (XAS/XES)



빔라인 주요 연구 분야 및 지원 실험 기법

	нх		SX
	XSS	NCI	SSS
Research topics		Instrumentations	
Condensed matter physics and Material sciences			
Thermal / Non-thermal melting dynamics	FXS	CXI	RSXS
Phase transitions	RIXS (RXES)	WAXS	FTH
Phonon / Lattice dynamics	Bragg-CDI		
Spin/Charge/Magnetic properties			
Chemical sciences			
Bond dissociation / Formation / Isomerization			
Charge transfer / Recombination / Localization	FXL	XANES	XAS/XES
Chemical reaction / Catalytic reaction			
Structural biology and Macromolecular dynamics			
Protein ternary structure / Active site of enzyme / Ligand binding site		CEV	
Photo-induced / Mixing-induced macromolecular dynamics	•	SFX	•
Structures at a molecular level			

PAL-XFEL 이용자빔타임 운영 통계


❖ 운전일수 / 제공 시프트 변동 추이

- 야간 빔타임 활용률 증가

	18'	19'	20'	21'	22'	23'
야간 <u>주간</u>	20%	40%	47%	49%	37%	77%

❖ 지원 과제 수 / 빔라인 이용자 논문

- 2023년 하반기부터 경X선 24시간 지원 시작

XFEL 빔라인 운영

빔라인장치 빔라인 운영 기본 방향 안정화 운영현안 장치 노후화에 대한 대책 제시방안 대체 부품/장비 확보 빔라인 운영 예산 증액 필요사항

박인장치 박정화 경쟁력 강화

XFEL활용 우수성과

이용자빔타임 활성화

빔타임 기회 증대

지원 Shift 수 증가 경X선 24h 운영

신규 이용자 증가

이용자육성 빔타임

Screening 빔타임

이용자 성과 확대

PAL-XFEL 이용자발표회

이용자육성 과제 2과제 (8000만원/년)

기존 이용자 성과 증대

Director's beamtime

실험기법 고도화/전문화

Science topic 중심의 실험기법 발전 방향 수립

시설 성능 및 서비스 향상

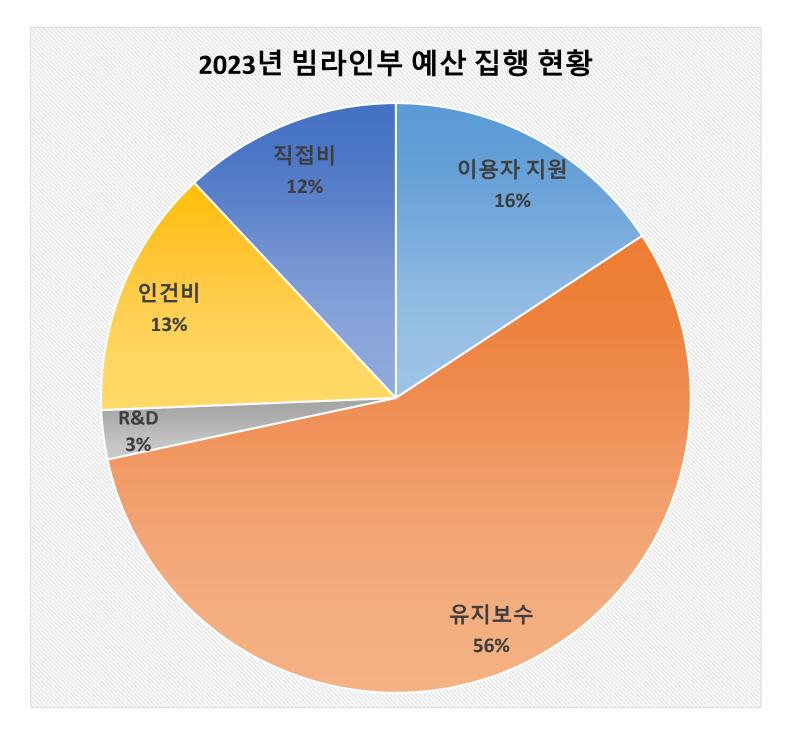
네크워크 외부 접속 정책 변경 (보안정책)

Remote experiments

Machine Learning 기법 활용 방안 마련 (빔진단, 데이터분석, 등)

중기재정 추가 확보

검출기, 데이터 인프라 등


XFEL 빔라인 인력 운영 현황

XFEL응용괴	학팀 (20명)	비고
• 인력 구성 박사연구원 16명 Postdoc 4명, (겸직 1: optics)		부장 1 팀장 2 휴직 1
HX빔라인매니저	8	
	FXS: 2 FXL: 2 CXI: 2 SFX: 2	팀장 1 휴직 1
sx빔라인매니저	3	
	XAS/XES : 2 RSXS : 1	
기타	레이저 3 DATA 1 UED 1	부장 1, 팀장 1

* 인력 구성 기술원 11명, ¹ Postdoc 1명, (²	비고	
기계, 진공	3	
전기전자	1	
제어/DAQ	4 (제어2, 네트워크1, IT 1)	
검출기	2	
실험지원	3 (SFX 1, 레이저 2)	

XFEL 빔라인 운영 예산 현황

❖ 빔라인 연간 운영예산

- 총 1,188,500,000 원 (4세대이용자육성과제 1.6억, 빔타임심사비 0.4억 제외)

❖ 예산 항목

- 유지보수: 장치 및 시설 유지보수 비용

- 이용자 지원: 이용자 실험용 기자재 및 소모품 구매 비용

- R&D: 실험기법 및 실험장치 개발 비용

- 인건비: 외부 인건비 및 지원인력 인건비

- 직접비: 연구활동비

XFEL빔타임 지원 및 제공 현황

분기	2020-2nd	2021-1st	2021-2nd	2022-1st	2022-2nd	2023-1st	2023-2nd
정규빔타임 시프트	107	116	117	118	118	118	140
정규빔타임 제공률	35%	35%	34%	31%	39%	40%	41%
지원자 수 (HX/SX)	47 (36/11)	47 (34/13)	51 (37/14)	53 (36/17)	39 (28/11)	41 (31/10)	56 (43/13)

비고

1 shift=12h 정규빔타임 제공일수 : 반기 당 70일

제공률 = 제공시프트 신청시프트

- 경X선 지원 과제 수가 연X선에 비해 3배 가량 많은 수준
- 전체 선정 과제 중 신규 이용자 과제 비율은 10~20% 수준
- XFEL 이용자층 확대를 위해 제공 빔타임 증가와 함께 국내 이용자 육성이 병행 되어야 함.

2023년도 PAL-XFEL 빔타임 운영 현황

	연도	연간 운전일수	정규이용자 빔타임	R&D 빔타임
J	2023	190	140 (심사주관: KOSUA)	50 (심사주관: PAL)

* 장비가동 및 튜닝: 57일, 유지보수: 95일, 가속기 M/S: 10일, no operation: 13일

HIELOI 7 H	배정 	성 시프트
빔타임 구분 	상반기	하반기
정규이용자빔타임 (상하반기 각 70일)	HX 82 shifts (24h 운전 12일) SX 36 shifts	HX 104 shifts (24h 운전 34일) SX 36 shifts
R&D빔타임 (상반기 23일, 하반기 27일)	R&D: 12일 (12 shifts) 빔라인 M/S: 11일 (17 shifts)	Director's beamtime: 9일 (18 shifts) 잠재적이용자발굴: 6일 (12 shifts) 빔라인 실험 기법개발: 3일 (6 shifts) Screening 빔타임: 2일 (4 shifts) 튜토리얼 빔타임: 0.5일 (1 shift)
		빔라인 M/S: 6.5일 (13 shifts)

R&D빔타임 프로그램 다양화

감사합니다

