

2024 Spring EPICS Collaboration Meeting

April 15 – 18, 2024

Status of PAL-XFEL

Chi Hyun Shim on behalf of PAL-XFEL

• Introduction and operation summary

- Two-color XFEL mode with time delay and pulse duration control
- Simultaneous operation of the hard and soft X-ray beamlines

- Project for new second hard X-ray beamline (HX2)
- Project for attosecond X-ray pulse generation at PAL-XFEL

Operation History of PAL-XFEL

PLS-II

2011: PAL-XFEL project started (Apr.)2016: Commissioning started (Apr.)2017: User-service started (Jun.)

PAL-XFEL

120 days for user (95% of availability) 2018: 140 days for user (95% of availability) 2019: 160 days for user (96.3% of availability) 2020: 170 days for user (96.9% of availability) 2021: 180 days for user (96.9% of availability) 2022: 190 days for user (97.1% of availability) 2023: 190 days for user (97.0% of availability) 2024: 190 days for user (98.5% of availability) $(\sim 4/11)$

PAL-XFEL Layout & Parameters

Feed-Back Controls, Energy Scan Controls and RFs

- * We are upgrading the F/B system in both hardware & software.
- ***** We are providing various energy scan services for HX-SASE, HX-SS, and SX-SASE.
- ***** It will be more complex in case of both HX line and SX line operation.

***** We have serviced stable self-seeding FEL beams.

*Pulse energy is calculated by using e-loss factor

*Averaging sampling time is 180 sec

Two-color XFEL with time delay control

- ✓ By utilizing variable gap undulator and dipole magnet for self-seeding section,
 two-color pump-probe XFEL pulses can be generated from single electron bunch
- ✓ Time delay between pump and probe pulse can be controlled by changing the current of the dipole magnet (max. time delay is 120 fs)

Pulse duration control using slotted foil at BC

✓ Pulse duration according to SF position is measured by using single-color SASE XFEL

Beam Images of Multi-Beamline Operation of HX and SX

Soft X-ray FEL Schemes during simultaneous operation

		L1 RF Φ	LX RF Φ	BC1 Collimator	L2 RF Φ	L3A RF Φ	BC1, BC2 Magnet	Control	
HX_Only		Φ_L1_HX	Φ_LX_HX	Gap_HX	Φ_L2_HX	Φ_L3_HX	TWQ_HX	Bunch by bunch Orbit F/B	
SX_Only		Φ_L1_SX	Φ_LX_SX	Gap_SX	Φ_L2_SX	Φ_L3_SX	TWQ_SX	Bunch by bunch Orbit F/B	
Scheme 1	HX	Φ_L1_HX	Φ_LX_HX	Gap_HX	Φ_L2_HX	Φ_L3_HX	TWQ_HX	Bunch by bunch	
	SX	Φ_L1_SX	Φ_LX_SX	Gap_HX	Φ_L2_SX	Φ_L3_SX	TWQ_HX	Cibit & Long. 17D	
Scheme 2	HX	Φ_L1_HX	Φ_LX_HX	Gap_HX	Φ_L2_HX	Φ_L3_HX		Bunch by bunch Orbit E/B	
	SX	Φ_L1_HX	Φ_LX_HX	Gap_HX	Φ_L2_HX	Φ_L3_HX	TWQ_HX		

C CS-Studio

🚰 RF Main 🕴																		
RF Pa	nel	RF Overview	RF (Control	Phase Co	ontrol Pha	se Cont.(Dual)	RF Trigg	ger	FEL Mode HX & SX Mode	L	inac Mode FEL mode	Bea HX	am End Point main dump	Bear ON	n	MIS User Clear guide	
Laser	Delay (ns) :	10850					RF Phase C	Control (H)	(& SX Sin	nulatenous	operatio	n)						
			DI 4 UN	_				1				,		D I 4 1				
Station	Crest	Feedback Opera	BL1:HX ation S	Set value	Error (104-2)	Feedback	BLZ : S.	X Set value	Error (104-2)		Station	Crest	Feedback	BL1 : H	X Set value	Error (104-2)		
Station	creat	recublick open				T CCUDUCK	operation	Set value			Station	Crost	TCCUDUCK	operation	Set Value			
Gun	16.843 +	0.000 + 3	33.700 =	50.543 ~	-3						L3_B1	70.756 +	0.612 +	-8.000 =	63.367 ~	2		
	242,650 + 47,510 +	0.000 +	1.000 =	243.650 ~	4						L3_B2	70,456 +	0.612 +	-8.000 =	63.068 ~	-3		
LU_02	47.516 +	0.000 + -	-2.000 =	45.516 ~	2	0.000 .	10.900 -	C1 100	71		DF2	170.900 +	0.000 +	90.000 =	260,900 ~	2	-0.0	
L1_01	71.903 4	-0.015 + -1	0.750 =	60.952~	-3	0.000 +	-10.800 =	60.817 ~	71		L4_01	69,804 +	0.000 +	<mark>-1.000</mark> =	68,804 ~	6		
	426 274 +	-0.411 + -17	79,000 =	246 863 ~	-3	0.000 +	-170.200 =	256.074 ~	21		L4_02	73.177 +	0.000 +	-1.000 =	72.177 ~	-1		
		0.411 1	0.000 -	240,000	0	0.000	110.200 -	230.074	21		L4_03	94.458 +	0.000 +	-1.000 =	93.458 ~	3		
DF1	95.000 +	0.000 + 9	90.000 =	185.000 ~	-0						L4_04	75.150 + 156.656 +	0.000 +	-1.000 =	/4.150 ~	-2		
L2_01	79.883 +	0.089 + -1	9.400 =	60.572 ~	2	0.000 +	-18.420 =	61.463 ~	138		14_05	41.412 +	0.000 +	-1.000 =	40 412 ~	-3		
L2_02	82.107 +	0.089 + -1	9.400 =	62,797 ~	1	0.000 +	-18.420 =	63.687 ~	79		L4_07	41.436 +	0.000 +	-1.000 =	40.436 ~	1		
L2_03	112.858 +	0.089 + -1	9.400 =	93.547 ~	-1	0.000 +	-18.420 =	94.438 ~	115		L4_08	329.640 +	0.000 +	-1.000 =	328.640 ~	-1		
L2_04	80.289 +	0.089 + -1	9.400 =	60.979 ~	-3	0.000 +	-18.420 =	61.869 ~	90		L4_09	42,803 +	0.000 +	-1.000 =	41.803 ~	-1		
L2_05	79.498 +	0.089 + -1	9.400 =	60.187 ~	1	0.000 +	-18.420 =	61.078 ~	131		L4_10	187.464 +	0.000 +	-1.000 =	186.464 ~	2		
L2_06	84.691 +	0.089 + -1	9.400 =	65.381 ~	-2	0.000 +	-18.420 =	66.271 ~	152		L4_11	42.235 +	0.000 +	-1.000 =	41.235 ~	2		
L2_07	87.391 +	0.089 + -1	9.400 =	68.080 ~	5	0.000 +	-18.420 =	68.754 ~	-2		L4_12	76 912 +	0.000 +	-1.000 =	172.120 ~	-25		
L2_08	36,990 +	0.089 + -1	9.400 =	17.680 ~	-4	0.000 +	-18.420 =	18.570 ~	141		L4_13	84.000 +	0.000 +	-1.000 =	/5.812 ~	-3		
L2_09	83.673 +	0.089 + -1	9.400 =	64.363 ~	-2	0.000 +	-18.420 =	65.253 ~	147		14_{14}	73.667 +	0.000 +	-1.000 =	72.667 ~	-2		
L2_10	85.515 +	0.089 + -1	9.400 =	66,204 ~	-0	0.000 +	-18.420 =	67.095 ~	171		L4_16	77.252 +	0.000 +	-1.000 =	76.252 ~	1		
	110,000	0.010	0.000	400.004		0.000 -	10.000	400.000	1.05		L4_17	138.579 +	0.000 +	-1.000 =	137.579 ~	-4		
L3_A1	140.004	0.612 + -	·8.000 =	108,994 ~		0.000 +	-10.000 =	106.383 ~	135		L4_18	85.120 +	0.000 +	<mark>-1.000</mark> =	84.120 ~	-2		
L3_AZ	143.004 +	0.012 + -	<u>-0.000</u> =	136,495 ~	-1	0.000 +	-10.000 =	133.884 ~	118		L4_19	83.504 +	0.000 +	-1.000 =	82.504 ~	2		
13.51	103.636 +	0.000 +	0.000 =	103.636 ~	-4	0.000 +	90.000 =	193,636 ~	Π		L4_20	82.211 +	0.000 +	-1.000 =	81.211 ~	-0		
DE2S	105.100 +			100,000		0.000 +	90.000 =	195,100 ~	7		L4_21	90.830 +	0.000 +	-1.000 =	99,229 ~	-1		
0120											1.4.23	90.091 +	0.000 +	-1.000 =	89.091 ~	-0		
Eadhack	Dhaca Initialia	zation				_					L4_24	334.572 +	0.000 +	-1.000 =	333.572 ~	1		
Feeuback		zauon	_			Phase	controller C	Dual-BL Enable	:/Disable		L4_25	332.682 +	0.000 +	-1.000 =	331.682 ~	0		
All set	zero	All Reset	Update (Ope.(FB +)	OP => OP)	(Min	i)	Multi OF	F		L4_26	331.487 +	0.000 +	<mark>-1.000</mark> =	330, 487 ~	-1		
											L4_27	336.050 +	0.000 +	<mark>-1.000</mark> =	335.050 ~	2		
				BI 1	: HX								BL2 : SX	[
	10.02		YL IN								14.140				1.0.04.140			
	L0_02	L	XLIN	LZ	L3_A	L3_B	L3_H	L4			L1_MZ	XLIN_M2	LZ_MZ	L3_A_MZ	L3_51_M2			
Feedback	: 0.00	0 -0.015	-0.411	0.089	0.612	0.612	0.612	0.000		Feedback :	0.000	0.000	0.00	0.000	0.000			
Operation	: -2.00	-10.750	-179,000	-19,400	-8,000	-8.000	-8,000	-1.000		Operation '	-10.800	-170.200	-18.42	-10.000	90,000			
Operation										operation								
tweak step			0.500	0.100	1.000	2.000		0.000		tweak step :	0.100	0,100	.10	0,100	0.100			
_		_)[][_																

- 🗆 X

New second hard X-ray beamline (HX2)

New hard X-ray undulator line (HX2) is proposed

- To provide more beam time to hard X-ray users 1) by operating HX1 and HX2 simultaneously
- 2) To increase FEL intensity at photon energies lower than 10 keV by increasing E_{beam}
- 3) To expand machine performance by applying advanced schemes such as attosecond-TW XFEL, improved SASE, and etc.

	HX1	HX2	SX1
Undulator period, mm	26	35	35
Undulator length, m	5.0	5.0	5.0
Undulator K	1.94	3.48	3.48
Undulator minimum gap, mm	8.75	9.0	9.0
No. of undulators	20	20	7
Photon energy, keV	6.5 ~ 14.5	2.0 ~ 10.0	0.25 ~ 1.25

dump

 $\lambda_{\rm r} = \frac{\lambda_{\rm u}}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$

(~2.0-10.0 keV)

Dog-leg optics for HX2

Parallel operation scheme for HX1, HX2 and SX1

✤ Operation plan

- Repetition rate: 30/30 Hz (HX1/HX2) operation using bunch by bunch slow kicker operation
- In the beginning, both SX branch and HX2 branch utilize slow kicker (60 Hz, ms kicker)
- Fast kicker (ns kicker; resonance kicker) and two-bunch mode will be developed for simultaneous 3 independent FEL beamline operation

Repetition rate for 3 FEL beamline operation

SX1	HX1	HX2
60 Hz	60 Hz	0 Hz
60 Hz	58 Hz	2 Hz
60 Hz	50 Hz	10 Hz
60 Hz	30 Hz	30 Hz
60 Hz	10 Hz	50 Hz
60 Hz	2 Hz	58 Hz
60 Hz	0 Hz	60 Hz

Attosecond XFEL at PAL-XFEL

Attosecond XFEL at PAL-XFEL

E_{ph} (keV)

Thank you for your attention!

