

КОМА

- Facility Overview
- Control System
 - Software and Infrastructure
 - Local System Control
 - Applications

Summary

Facility Overview

Facility Overview

- Main facilities at KOMAC
 - 100 MeV Proton Linac in accelerator building.
 - Various small-scale accelerators and test stands in beam application building.
- Developed via Proton Engineering Frontier Project (2002 ~ 2012)
- Started user beam services from July 22, 2013.

6 Research Management Building 7 Dormitory 8 Information Center 9 Sewage Plant

<image>

4

Facility Overview – Proton Linac

Features of KOMAC 100 MeV linac

- 50 keV Injector (Ion source + LEBT)
- 3 MeV RFQ (4-vane type)
- 20 & 100 MeV DTL
- RF Frequency : 350 MHz
- Beam Extractions at 20 or 100 MeV
- 5 Beamlines for 20 MeV & 100 MeV

Facility Overview – Proton Beamlines

KO

Facility Overview – Operational Status

K O M A C

Central Control Room (CCR)

Top Screen for Accelerator Operational Status: Interlock, Timing, Beam Path, Energy, Gate Valve, Magnets

- 1. Personnel Safety Interlock System (PSIS) : shielding door control, access control, interlock status, Key box for beam service
- 2. Control consoles designed with enough flexibility to allow most accelerator programs to be operated from any location in the control room
- 3. DCS for utility control system, Radiation monitoring system (RMS), Beam tuning system, Alarm monitor

Control System Architecture

Korea Multi-purpose Accelerator Complex

- EPICS for the distributed control system at KOMAC
 - Accelerator and local systems, target rooms, and beamlines.
 - IOCs run on Linux except data acquisition applications
- Network
 - Diverse networks : machine, timing and interlock network
 - Establishing a backbone switch-based network
 - Network Management System (NMS) for optimizing network infrastructure
- Client Software
 - Control System Studio
 - Operations, alarm service, save & restore service
 - Applications development for data analysis
 - Python / Java / Web technology

- Managing process and device operations with high reliability while executing essential local control functions
- Integrated the local system : VME, PLC and embedded systems
- Application field:

VME systems	PLC	Embedded systems
 Applications needing rapid data acquisition and custom FPGA-based processing. Timing system (Micro Research Finland) LLRF control system Beam profile monitor 	 Used to effectively control automated processes with High reliability Vacuum control system Resonance control cooling system Klystron control system Modulator control system 	<text><list-item><list-item></list-item></list-item></text>

VME Systems – LLRF

- Low Level RF (LLRF) System: Control RF amplitude/phase within 1% and 1°
 - RF digital feedback control system via FPGA
 - Input and monitoring RF Amplitude, phase, PI control variables, and Open/Closed loop
- LLRF IOC
 - PENTEK7142, PMC type, 4ch 125 MHz 14bits ADCs, 1ch 500 MHz 16bits DAQ, Xilinx Virtex-4 FPGA
 - Baseboard : MVME5100, vxWorks 6.8 OS
 - EPICS Software tool

한국원자력연구원

- EPICS IOC : pick-up signal processing, waveform viewer

LLRF Control System

VME Systems – BPM

BPM IOC (MVME3100 & PENTEK7142)

Korea Multi-purpose Accelerator Complex 양성자가속기연구센터

BPM User interface

Embedded System – BCM

- Requested the compiler from I-tech and Received a VM (LINUX) with the compiler configuration completed from the vendor(DEC. 2023)
- With a software upgrade, the electronics can directly process ADC sample data internally, allowing for advanced data processing and waveform analysis.

Embedded System – pDAQ Development

Feature	Specification	
FPGA chip	XC7Z010-1CLG400L	
Processor	Dual-core ARM Cortex-A9	
Memory	DDR3, 512MB	
ADC	AD7903	
ADC Specifications	Differential ended, 16-bit, 1MSps, 0 ~ 10 V	
External Trigger	1.3ms data acquisition	
Data Storage	BRAM	
Channels Sampled	4	
External Trigger I/O Channels	1	
Relay Output Channels	1	
Operating Frequency	uency 20Hz or higher	
Pulse Width	1.5ms width	

1.PL reads the ADC periodically.

- 2. When trigger occurs, ADC data is sequentially read and stored in the BRAM.
- 3. Interrupt occurs when the count of the data stored in the BRAM is the count required.
- 4. Interrupt is input to the **PS** and delivered to the **kernel**.
- 5. When the kernel module catches interrupt, it generates a signal through a specific process (EPICS IOC).

6. When an **EPICS IOC** receives a signal, it reads the data of the BRAM and generates the waveform data.

양 성 자 가 속 기 여

Embedded System – pDAQ Performance

pDAQ Installation for Beam Monitoring

pDAQ as Beam Current Monitor(DTL107, BL100, BL103)

User Interface for pDAQ ADC control : threshold, gain, offset, data size, period Fered 11888357 ∨ 120 21 2835542 ∨ 150 2 620696 ∨ 20 2 AENET NESET NESET = CLEAR DOOTSHOP CLEAR DOOTSHOP CLEAR DOOTSHOP NC 🔵 2,00001 /00 56 160 150 200 200 800 80 400 400 500 500 800 650 100 750 800 855 800 + 11+++ 4 9 4 A 4 B Max L01803 mA Also -201283 mA MARY L00187 mA MARY L00187 mA 80N Accumulated values statistical S40800 041000 041200 041408 041808 SCMEDILIZA-ACC, CPU,R parameter 1 5 1 4 4 4 A A A A A A A A A S IN H 000045 74 NDK 000154 WA Mar 000112 mA 005485 WA 100 E IEAN COTORS HA 042120 042130 042140 042140 042200 042210 042220 NC 000455 WA # A # 💽 🖬 🖄 🖨 💣 🖾 🕋

pDAQ as RF Monitor

Client Software

Client Software – CSS

GUIs for LINAC

- The main user interface for the KOMAC control system
- Comprehensive set of tools for monitoring and controlling various aspects of the system

CSS Services

- Alarm system : Phoebus based alarm server, Alarm logger with ELK stack
- Save and Restore : Timing & Magnet operating information, Integration with GitLab
 한국원자력연구원

ком

양 성 자 가 속 기 연 구 센 터

Client Software – Python/Java

Beam Tuning and Diagnostics Applications

Phase scan

RF Phase scan application find phases accelerated by design energy using beam phase monitor diagnostic equipment

Quad scan

Efficiency of beam emittance measurement by improving wire scanner control and data processing system

Python and Java binding for powerful user interface in beam diagnostics applications:

Modelling simulation, machine learning, enterprise database and experiment DAQ

Korea Multi-purpose Accelerator Complex 양성자가속기연구센터

Client Software – Web

Alarm Log Analysis

Data Analysis

KAERI

Korea Atomic Energy Research Institute

7:CT:CURR 검색

등록 IP 대시보드

- Collecting alarm information from phoebus-based alarm system via ELK stack and Visualizing alarm status using Reat
- Every time an alarm occurs, update the most recent alarm
- Selecting a PV from the alarm table allows immediate access to data for the one-hour period before and after the event occurrence.
- developing a data analysis web tool using the D3 library
- Adjusts sampling size dynamically for swift rendering during zoom events.
- Computes stability statistics with each zoom event for real-time analysis.

Device Management

- Developing a device management application using **Django** and **React**
- Utilizing IP activation connection information from NMS
- Management through DB enables realtime interworking and identifies network status, MAC changes, etc.

- Development and stable operation of an integrated control system Using EPICS software.
- Implementation of a user-friendly interface tailored to optimize operation of the KOMAC
- Continuous enhancement of the KOMAC accelerator control system through in-house technology development
- Establishing an environment for data acquisition system (DAQ) application, synchronized data collection, storage, and analysis.
- Advancement in application development skills for machine study and beam diagnostics.
- Planning for modernizing the framework :

Ubuntu or Rocky Linux(Centos7), Phoebus (CSS), EPICS7(EPICS3)

Thank you

Renewal of Central Control Room

Automation

Reducing the burden on operators by simplifying tasks and automating processes

Implemented automatic driving logic for

the moderator (2023)

Developing automatic driving logic for the klystron and high-frequency (2024~)

RF stability counts > 3 counts

|Read_dF-Target_dF| > 0.5kHz

4)

5)

Embedded System – pDAQ Development

- **1.PL** reads the **ADC** periodically.
- 2. When trigger occurs, ADC data is sequentially read and stored in the BRAM.
- 3. Interrupt occurs when the count of the data stored in the BRAM is the count required.
- 4. Interrupt is input to the **PS** and delivered to the **kernel**.
- 5. When the kernel module catches interrupt, it generates a signal through a specific process (EPICS IOC).

6. When an **EPICS IOC** receives a signal, it reads the data of the BRAM and generates the waveform data.