
The EPICS Training VM
Ralph Lange

Basic Ideas
• Reproducible platform for hands-on training sessions

• Training courses are done a few times a year

• Demonstrations and hands-on exercises are often part of the training

• Needs to be easily maintainable in a shared fashion

• Virtual machine based setup

• Runs on may host platforms (Linux, Windows, old Macs)

• OVA applications can be distributed (but they are huge)

• Trainees start with a working setup (don’t waste time with the installation)

• Ansible based installation

• Different parts (training sessions) are available as independent roles

• Automated installation on the “empty” VM for a specific training course

• Ansible content are text files (yaml) under Git management

The Virtual Machine
• Based on Oracle VirtualBox (7.0)

• Freely available virtualization platform

• Good experiences at many labs

• Using Rocky Linux 9.3

• Best knowledge and most existing Ansible code is based on RHEL

• Easy installation from Rocky distribution images

• Training-VM could be extended to also work on Debian-based distros

• Generic “EPICS Developer” (epics-dev) User Account

• Best practice:
Read-only shared installation, development under a regular user account

• Personalize your VM (or use your own)!

• Make yourself comfortable:
Create your own user, install your favourite IDE and tools, use your own VM

The Training-VM Installation
• From sources

• For the EPICS related parts, the virtual machine contains all source code and all
knowledge how things are built and set up

• Simple, following best practice

• Avoid unnecessary complexity (e.g., containers)

• Show how a minimal EPICS set-up would look like

• Reproducible

• Under configuration control (git) and fully scripted

• Easier to support trainees

• Modular

• Easy to adapt to specific training events

• Easy to maintain collaboratively

The Training-VM Installation
• Ansible roles control the scope of the installation

• epics-modules
C/C++ EPICS Support modules: Base, ASYN, Sequencer, AreaDetector, …
Under /opt/epics

• epics-tools
Java 17, Maven: from installation downloads for a fixed and portable install
Phoebus: from source
Under /opt/epics-tools

• docker
Podman and podman-compose: everything to run groups of containers

• bluesky
Containerized setup for the Bluesky training session
In container images and under /opt/bluesky

Configuring the Training-VM Installation
• The central configuration file is

~/training/local.yml

• Enable/disable roles as you need them

• Define the list of EPICS modules that the epics-modules role will install

• Set http/https proxies (if you need to)

• Define the settings for a corporate firewall (if you need to)

Applications on the Training-VM
• Under ~/training

• Apps roughly follow the training sessions

• The directories under ~/training mostly contain regular EPICS Modules

• Configuration against the training VM setup is done through a single file,
~/training/RELEASE.local

• To compile application modules, follow the usual EPICS approach:
$ cd <TOP>
$ make

• To run IOCs, similarly:
$ cd <TOP>
$ (cd iocBoot/ioc<ioc-name>; \
../../bin/linux-x86_64/<IOCbinary> st.cmd)

Update the Training-VM Installation
• The update.sh script gets your training-vm up-to-date.

Call it (best from the ~/training directory) to:

• Update the Ansible configuration and the applications
git pull the appropriate branch of the training-collection meta-repo
(The training event name is configured in /etc/epics-training)

• Get the Ansible collections
Install the required Ansible collections (equivalent to libraries)

• Run Ansible
Re-run main Ansible playbook to update the installation
Ansible is target state-based
Tasks have been written to minimize run time when nothing needs to be done

• Run it before a session to catch last-minute updates by the trainers

• If you only want to update the application part, it suffices to run
git pull --recurse-submodules

in the ~/training directory

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

