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Distance Preserving Machine Learning for Uncertainty Aware Accelerator Capacitance Predictions

Steven Goldenberg, Malachi Schram, Kishansingh Rajput, Thomas Britton,

Chris Pappas, Majdi Radaideh, Jared Walden, Dan Lu, Sarah Cousineau

RESEARCH DESCRIPTION

« Capacitors in High-Voltage Converter Modulators (HVCMs) degrade
over time which causes significant downtime

« Extensive simulation data based on available non-invasive sensor data
is available

 Modeling HVCM capacitance values with Uncertainty Quantification is
necessary to provide a reliable early indicator of failure
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Figure 1: Average downtime by system in the Spallation Neutron Source (SNS)
at the Oak Ridge National Lab.
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MODEL PERFORMANCE

e <1% in-distribution error

e <3.5% out-of-distribution error

e |Increased model uncertainty for out-of-distribution samples

MODEL PREDICTION ERRORS
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Figure 4: Violin plots of
percent errors for each
capacitor (A, B, C) over
each of our data splits. The
width of each plot denotes
the density of predictions
at that error level.

Figure 6: Average
uncertainty returned by
our model with increasing
Gaussian noise applied to
the training data.

This research has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US Department of Energy (DOE). The Jefferson
Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the DOE under Contract No. DE-AC05-060R23177. This research
used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.
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Reshaping SRF Cavity Resonance
Management with Smart Techniques

Faya Wang
Mar /7, 2024
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SRF Cavity

= Cavity Circuit model
2 v,

Linear System

= Lorentz pressure distribution on cavity wall

Nonlinear Force
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SRF Cavity DMD

Mapping nonlinear problem in large state dimension with kernel function
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DMD: Dynamic Mode Decomposition

d
ax(t) = F(x(t)) Xk+1 = F(xk) F =~ f based on data
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SRF Cavity DMD Test Results

Validation of DMD by Test Data
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Faya Wang, “Enhancing SRF cavity stability and minimizing detuning with data-driven resonance control based on dynamic mode decomposition”, AIP Advances 13, 075104 (2023)



Active Resonance Controller

= Simulation with 32 mechanical modes
= Cavity half bandwidth: 16.25 Hz
= Detune std: ~ 1 Hz
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Orbit Response matrix correction based on exploration enhanced evolutionary algorithm
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» Combining PSO and MOGA and introducing opposition based learning
and Levy flight, it greatly improves the global exploration capability of
the algorithm, which can significantly improve the effect of response
matrix correction and obtain better dynamic performance.
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University of Chinese Academy of Sciences

e RL-Based Control Strategies for HIPI Accelerator
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University of Chinese Academy of Sciences

e RL-Based Control Strategies for HIPI Accelerator
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The Random Initial Values Policy Test with the Environment Based on Surrogate Model 1y Random Initial Values Policy Test with the Environment Based on HIPI

The control strategy based on RL is faster than manual debugging in beam commission,
completing hours of manual work in minutes.



Optimization design of photocathode injector assisted
by deep gaussian process

Sun Zheng, Xin Tianmu

Combined geometric parameters of radio frequency gun and beam element parameters

Challenge '

t00 many parameters evaluation process time-consuming

geometric parameters JRat assisted [ real evaluator J

optimizing electric field » { Optimizer ] —>
 C—

element parameters [ ml evaluator J

optimizing beam transport (deep gaussian process)

Objectives: reduce the emittance and bunch length at exit




Study of Orblt Correction by Neural Networks
In Taiwan Photon Source

Mau-Sen Chiu
2024/03/07

Beam Dynamics Group, NSRRC



Abstract

The Taiwan Photon Source is designed as a 3 GeV synchrotron
light source, encompassing a 518.4 m circumference. The lattice
structure of the storage ring consists of 24 Double-Bend
Achromat cells. The storage ring 1s equipped with 172 BPMs and
72/96 correctors to do orbit correction and control in horizontal
and vertical planes, respectively. The correction algorithm uses a
measured orbit response matrix and singular value decomposition
(SVD) algorithm at present. This traditional method is rooted in
physics and well-established principles of beam dynamics in
particle accelerators. In this study, we use neural network model
to do orbit correction. The training data for the neural networks is
generated by accelerator toolbox (AT).



Orbit Correction by SVD (Traditional)

1. Establish reference orbit (Target Orbit)
2. Measure Orbit Response Matrix R between BPMs and correctors.

3. Apply SVD to decompose R, and select the number of singular values
4. Measure actual orbit - check for bad readings
5. Compute difference orbit
6. Compute corrector strength from ——— A0 =V -diag(1/w,)-(U "LAX)

AX: Difference Orbit

7. Check for corrector currents in reasonable range

8. Apply corrector currents
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Orbit Correction Scheme in TPS Storage Ring
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Simulation of Orbit Correction by Neural Networks

B Training:

1. 72 horizontal correctors (HC) strengths within +/- 2.5 prad are randomly
assigned and then get orbits (172 BPMs) by AT: repeat 3000 times.

2. Build Model by keras: input layer is 172 nodes, hidden layer is 172 nodes,
output layer 1s 72 nodes.

3. Train the model with AT simulation data.

4. Save the well-trained model of the neural networks.

B Test:
5. Generate many orbit distortions by randomly shifting 249 quadrupoles
within +/- 3 um in horizontal plane.
6. Load the well-trained model of the neural networks
7. Input the orbit distortions to the neural networks to get the predicted
corrector strength
4 8. Use the predicted corrector strength to correct the orbit distortion
generated by quadrupole misalignment
_9. Iterate step 7 ~ 8: 3 times




Output:

Training Neural Networks (NN)

Output: Corrector Strength by NN and AT
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Simulation of Orbit Correction by Neural Networks
In TPS Storage Ring
E Dipole

DBA cell

172 BPMs 72HCs / 96 VCs

Golden Orbit Orector

Machine  Simulator
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Simulator Done
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Misalignment quantities of 249 quadrupole magnets within +/- 3 um to generate orbit
distortion in TPS storage ring simulated by AT.
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Simulation of Orbit Correction by Neural Networks
In TPS Storage Ring

Horizontal Orbit Correction by Machine Learning
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Orbit correction by neural network: Red is

the orbit before correction (BC), green,

magenta, and blue are the orbit after

correction (AC), iterate 3 times (AC-1, AC-

2,AC-3).



Orbit Correction by Machine Learning

Demonstration
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ORBIT CORRECTION WITH MACHINE LEARNING TECHNIQUES AT
THE SYNCHROTRON LIGHT SOURCE DELTA 115m, 1.5 GeV

D. Schirmer*
Center for Synchrotron Radiation (DELTA), TU Dortmund University, Germany

30 HC (200 to 300 mA), 54 BPM, 1500 data sets

1. dala sources/acquisition 2. data cleaning

2" Initial%bit I\ y
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4. training/learning 3. NN topology design

5 performance check

|
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6. testing Figure 6: Iterative application of the pretrained FFNN re-

ferred to the previously corrected orbit, starting from a ran-
Figure 1: Development stages for an ML-based OC. domly disturbed orbit (start). After 3 successive correction
steps, an error of < 200 um was achieved.




History of Neural Networks

————— M(x)- NN ( m‘ (X)))- "l (X)
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CNN: Convolution Neural Network
RNN: Recurrent Neural Network

DBN: Deep Belief Network
RBM: Restricted Boltzmann Machine

Ref: Deep learning in optical metrology: a review, Chao Zuoet al. Light: Science & Applications (2022) 11:39



Popular Deep Learning & Software

TABLE 2 | List of popular deep learning models, available learning algorithms (unsupervised, supervised) and software implementations in R or python.

Model Unsupervised Supervised Software

Autoencoder v Keras (Chollet. 2015). R: dimRed (Kraemer et al., 2018), h2o (Candel et al., 2015),
RcppDL (Kou and Sugomori, 2014)

Convolutional Deep Belief Network (CDBN) v R & python: TensorFlow (Abadi et al., 2016), Keras (Chollet, 2015), h2o (Candel et al.,
2015)

Convolutional Neural Network (CNN) v R & python: Keras (Chollet, 2015) MXNet (Chen et al., 2015), Tensorflow (Abadi et al.,
2016), h20 (Candel et al., 2015), fastai (python) (Howard and Gugger, 2018)

Deep Belief Network (DBN) v ReppDL (R) (Kou and Sugomori, 2014), python: Caffee (Jia et al., 2014), Theano
(Theano Development Team, 2016), Pytorch (Paszke et al., 2017), R & python:
TensorFlow (Abadi et al., 2016), h20 (Candel et al., 2015)

Deep Boltzmann Machine (DBM) python: boltzmann-machines (Bondarenko, 2017), pydbm (Chimera, 2019)

Denoising Autoencoder (dA) v Tensorflow (R, python) (Abadi et al., 2016), Keras (R, python) (Chollet, 2015), RcppDL
(R) (Kou and Sugomori, 2014)

Long short-term memory (LSTM) rnn (R) (Quast, 2016), OSTSC (R) (Dixon et al., 2017), Keras (R and python) (Chollet,
2015), Lasagne (python) (Dieleman et al., 2015), BigDL (python) (Dai et al., 2018),
Caffe (python) (Jia et al., 2014)

Multilayer Perceptron (MLP) SparkR (R) (Venkataraman et al., 2016), RSNNS (R) (Bergmeir and Benitez, 2012),
keras (R and python) (Chollet, 2015), sklearn (python) (Pedregosa et al., 2011),
tensorflow (R and python) (Abadi et al., 2016)

Recurrent Neural Network (RNN) RSNNS (R) (Bergmeir and Benitez, 2012), rnn (R) (Quast, 2016), keras (R and python)
(Chollet, 2015)

Restricted Boltzmann Machine (RBM) v ReppDL (R) (Kou and Sugomori, 2014), deepnet (R) (Rong, 2014), pydbm (python)

(Chimera, 2019), sklearn (python) (Chimera, 2019), Pylearn2 (Goodfellow et al., 2013),
TheanolLM (Enarvi and Kurimo, 2016)

Ref: An Introductory Review of Deep Learning for Prediction Models With Big Data,

Frontiers in Artificial Intelligence, 28 Feb. 2020



Training by Backpropagation
¢ Il vt ol How to determine weights and bias ?

e For all training epochs
* for all input-output in training set
 using input and compute output : forward propagation
* compare computed output with training output -> calculate loss function
» update weights (backpropagation) to improve output -> minimize loss function

~

 if accuracy is good enough, stop

/ Input Hidden Oulput

Training Data

inputx| =

BN L 3 Minimize loss function

Optimizer :
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https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
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Workflow of Neural Networks

> Software Packages: Keras, Tensorflow, Python.

» Data collection: Scaling and normalizing data, then splitting data into training,
validation and test sets.

> Build a neural network: Select an appropriate neural network architecture (e.g.
feedforward, recurrent, convolution, et al) based on problem type (e.g. regression,
classification, ef al.), and assign the number of layers, neuron number in each
layer, activation function (e.g. sigmoid, tanh, ReLu, ef al.).

» Compile the Model: Specify the loss function (e.g. mean square error, et al.),
optimizer (e.g. adam, sgd, et al.) that adjusts the model’s weights and bias.

> Fit (Training) Model (minimize loss function): Specify the batch size, the
number of epochs (training iteration times), and using training set of data.

> Evaluate Model: Evaluate the model’s performance by using validation data set.

> Fine-Tuning Hyperparameter: Training model with different learning rate
(step size during training), batch size (number of data sets used in each iteration of
training, , number of layers, neurons per layer, Epoch (training times of passing
data sets through network model), to avoid underfitting and overfitting.

» Make Predictions: Use the trained model to make prediction on test data.



Python Code by Keras for XOR

import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense

# the four different states of the XOR gate

training_data = np.array([[0,0],[0,1],[1,0],[ 1,1]], "float32")

# the four expected results in the same order

target data =np.array([[0],[1],[1],[0]], "float32")

# Build a model

model = Sequential() Dense: Fully connected
model.add(Dense(16, input dim=2, activation="relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss="mean squared error’,

optimizer='adam',

metrics=['binary accuracy'])

# start to train

12

model.fit(x=training_data, y=target data, nb epoch=500, verbose=2)

# Prediction

print model.predict(training data).round()

https://keras.io/api/metrics/

https://keras.io/api/optimizers/

https://keras.io/api/models/model_training_apis/
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https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html



https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://keras.io/api/models/model_training_apis/
https://keras.io/api/metrics/
https://keras.io/api/optimizers/

Dynamic vacuum and
temperature predictions for
InNformed anomaly detection at the

CERN-SPS

F.M. Velotti, M. Barnes, G. Favia, V. Kain

N/



Motivation

> Moving towards High Luminosity LHC >
Intensity effects induce high stress on
sensitive equipment, e.g. kickers, septa...

> Electron cloud, beam induced heating
main responsible

> Important source of unavailability of the
CERN-SPS

o If kickers get too hot, risk to not be able to
Inject or damage them =» cool down needed

o If vacuum rises too much, high risk of
breakdown in high voltage elements

> ~50% of call to stand-by service “just” for
resets due to high vacuum/high
temperature interlock trip

Induced
heating

[Source]



http://dx.doi.org/10.1103/PhysRevSTAB.8.094401

Possible solutions G

Recursive predictions temperature

> Developing “intelligent” system to: o Goua

e Predictions

I
N
wn

o Predict machine behavior for given beam properties
o Determine normal and abnormal operation

o ldentify breakdowns from vacuum readings |
o Define optimal machine usage s

» Gradient boosting algorithms very successful at 3004,
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Experience with ML-driven applications
at PETRA Il

NNs for ID orbit
distortion

Badger/Xopt

optimization

Optimizations of lifetime and
injection efficiency were performed
and compared with the results
obtained with the current manual

procedures.
T T T T T
2.5+ —
E/ 0.0 - 80| W Initial
: - erational
> 70 |- = g:dgetr
-2.51 | | I L -
50 100 150 200 60
BPM num

'
o
T

The combined impact of multiple IDs
moving at the same time is non-linear. NNs
accurately predict the transverse
displacement of the beam along the ring
for any given ID configuration.

w
o
T

Lifetime*Current [h*mA]

N
o
T

=
o
T

o

Pipeline for ML

and control
applications

4
4 N 4 )
Failure Manual
handling = mode
Q

The ACSS (Accelerator Control and
Simulation Services) allows for
scheduling and orchestrating of
multiple intelligent agents, training and
tuning of ML models, handling of data
streams and for software testing.



Using Reinforcement Learning for CSR radiation optimization at a Linac A\‘(IT

Karlsruhe Institute of Technology

Split ring modeled in Cheetah. ,;'}j“.‘;_ I¥2 Beam distribution
Gun laser resonator | ow energy = 425
E-Gunm b L spectromete HIHAC 424
0=z oo B-o:2 106000000 = ) R
T =T O /\, N 1= \ . w422
i § ~:< p A4 A4 \ A 4
Solenoid ” 2§' [ 42.1

Action

Formulating the RL task

Reward %os« Peak f|e|d

Emax

accelerator setting [®rr, Ochicanel

Observation "\ cam parameters - , £, /
Action A[¢RF» QChicane]
PPO agent
« Bunch length: elu(6inreshoid — ) trained in SB3
e CSR field: £,

—40 =20 0 20 40 -40 =20 0 20 40
z[fs] z[fs]

Reinforcement Learning Based Radiation Optimization at a Linear Accelerator, Chenran Xu



Improving Surrogate Model Performance for Sparse Outputs

in the Spatial Domain

Accurate estimates of where beam loss
occurs is important both for overall
optimisation and personnel/machine

protection

v(x) = [cos(2rnBx), sin(2nBx)]"

Where B € R™*¢, with m being the embedding
dimension

Concatenating 1D-
fourier feature
mappings (proven

to be effective in 2D
applications) of the

spatial dimension
with the inputs to
the model to
improve resolution

ISIS Neutron and
Muon Source

Science and
Technology
Facilities Council
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Increasing the Embedding Dimension (m) decreases MSE
and Peak Error, as well as reducing errors between
predicted peak maxima and the overall cumulative loss.

\W/
"/I I\

Also improves stability of peak predictions in sparse
outputs

BUT adds a high frequency component to the output
prediction which is non-physical for smoother functions.
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! | " The Reinforcement Learning for

R|L4ATA Autonomous Accelerators collaboration
https://rl4aa.qithub.io/

‘Workshops every year

Mission

= Connect RL enthusiasts in the
particle accelerators community
and share our experience.

= Teach fundamental RL concepts
and show practical accelerator
applications.

= Discuss the current challenges of
developing RL algorithms for
particle accelerators.

= Be a community!

@i’: '@_ Join our
N i~ Discord
() gdpe server

KIT — The Research University in the Helmholtz Association WWW. kit.ed u


https://rl4aa.github.io/

Reinforcement Learning for
Intensity Tuning at Large FE |

Facilities

4th ICFA Machine Learning Workshop

Jan Kaiser, Annika Eichler, Auralee Edelen, Daniel Ratner, Malachi Schram and Kishansingh Rajput
Gyeongju, 7 March 2024

- c! A-h NATIONAL
HELMHOLTZ .geff;?son Lab S /mnS [SSiraror



FEL Intensity Tuning at LCLS

* Maximise FEL intensity using 14 quadrupole magnets

* Challenges:
» Slow simulation -> Cheetah and neural network surrogate modelling
+ High dimensionality and easy failure -> Curriculum learning

™

Ultimately also -
European
transfer to XFEL

Action

(quadrupole settings) RL Agent
(Stable Baselines3)

Reward
(based on intensity)

Observation
(Quadrupole settings
+ intensity)

_““le

H Ml | l | ’ | | | ’ | ‘ | ‘ | l | l | ‘ | ‘ | | | | | ‘ H ‘ | 1 | I | | | ‘ | ‘ | l | | {J | WT ‘ ﬁ WJTLTlTJ1JTLHTJWJ'WL"%"JTLWH«PVIJ%J"NLHLHTLIJTHWWM"Jh
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DESY. Reinforcement Learning for Intensity Tuning at Large FEL Facilities | 4th ICFA Machine Learning Workshop | Jan Kaiser



Results with PPO

It works!

* Proximal Policy Optimisation (PPO)
algorithm from Stable Baselines3

* Training for 50 Million environment

interactions

* 1 day 16 hours on a HPC cluster node

Magnet settings

Normalised actuator setting
g
’

L
10

Reward

s

rollout/ep_rew_mean, eval/mean_reward

6
2
global_step
0
oM 20M 30M 40M 50M
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DESY. Reinforcement Learning for Intensity Tuning at Large FEL Facilities | 4th ICFA Machine Learning Workshop | Jan Kaiser
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Gradient-based Reinforcement Learning

We are using Cheetah!
Achieve same
—P performance in 45x
fewer samples.

Gradient-based RL with

SEEEl Ui I true policy gradient.

automatic
differentiation.

Mean return
S
T
1

2 = il
—— Gradient-free

0r —— QGradient-based ]

1 " " " 1 1 " " N " 1 " L 1 " 1 " 1 " L 1 N " L " 1

0 it 2 3 4 5

Number of interactions %108

DESY. Reinforcement Learning for Intensity Tuning at Large FEL Facilities | 4th ICFA Machine Learning Workshop | Jan Kaiser Page 4



Contact

DESY. Deutsches Jan Kaiser
Elektronen-Synchrotron Machine Beam Controls (MSK)

jan.kaiser@desy.de
www.desy.de
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Trust Region Bayesian Optimization for Online Accelerator Control

Trust region
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Global - local BO optimizer

Scales well to high-dimensional
problems

Badger + Xopt
Badger GUI interface
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Development of beam transport system optimization method

using VAE and Bayesian optimization
Y. Morita, T. Nishi, T. Nagatomo, Y. Nakashima

Ultimate goal But ...

Optimize the entire accelerator facility at once ‘ There are too many parameters

Reduce the number of parameters using VAE

Method

Dimensional reduction
Input - NN Output -
Acc. data Latent Variable z Acc. data

Decoder

Optimize Z using
Bayesian optimization Recovering Input

Parameters Generating
Latent Variable

Parameters

Optimization using z and decoder

We have already started experiments with L.ow Energy Beam Transport!
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Simulation methods of 3D coupled storage ring based on SLIM formalism

ZHAO Jingyuan, TANG Chuanxiang, DENG Xiujie, PAN Zhilong, LI Zizheng, CHEN Liwei, Tsinghua University, Beijing, China
Alexander Chao, Tsinghua University, Beijing, China, also at Stanford University, Stanford, USA

SLIM Formalism

SLIM is a linear storage ring beam dynamic formalism based on
transport matrix and eigen-analysis. It can self-consistently analyze
linear coupled/uncoupled storage ring and give the following results
without using any courant-snyder auxiliary functions.

o All the linear dynamics
* Closed orbit disortion

 Equilibrium beam size and shape

SLIM Formalism

M(sy|S)exs | —

eigenvectors —> | linear dynamics

Courant-Snyder Formalism

M(s5|s1)2x2 | =™ | auxiliary functions | —> | linear dynamics

We have extended SLIM and processed all elements with thick lens
analysis, which speeds up SLIM code calculation. SLIM can thus be
used as a linear self-consistent physical computing core for MOGA
and machine learning.

. 30000

Generalized longitudinal strong focusing

Generalized longitudinal strong focusing (GLSF) scheme aims to
produce coherent EUV radiation turn by turn in laser-driven storage
rings. It invokes transverse-longitudinal coupling and then attains a
short bunch length with significantly reduced modulation laser power.

MO

GLSF storage ring

M1 Rad M2

part 1 part 2 part 3 part 4

We present a method for analyzing local lattice design with SLIM, and
combine SLIM and MOGA to carry out lattice design of GLSF. Finally,
we achieve a bunch length of less than 5nm at the storage ring
radiator.



Multiobjective Optimization of Cyclotron

AR
@ RCNP Cavity Model using Neural Network ? OSAKA UNIVERSITY

Ahsani Hafizhu Shali, Takafumi Hara, Tetsuhiko Yorita, Hiroki Kanda, Mitsuhiro Fukuda
Research Center for Nuclear Physics, Osaka University

Reducing the
computational cost for
cavity optimization

LA Variations limited to smaller

Smaller components modification to components, ShOUl(.j not
maximize Q factor and minimize return loss affect beam dynamics

Coupler & NN is trained to replace FEM simulation, for the
e dl specific case of RCNP AVF cyclotron cavity

Qualty Factor prediction

10800 A e gk o i NN mOdel. COUl.d . .
10600{ ﬁelﬁ?ﬁ‘ﬂw;?}“ 4 5w‘*’*ﬁ§ ™ ize th tt f SlERsen Input—6 120N 110N 100N SN -
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z AR | : -

210000- | , : ' : : ' return loss Ofa CaVIty’
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awoo| R with relatively small 2569 samples

prediction o v
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Research on Recognition of Quench and Flux
Jump Based on Machine Learning

The Institute of Modern Physics is developing the Fourth generation of Electron
Cyclotron Resonance (FECR), which requires Nb3Sn superconducting hexapole
magnets with higher magnetic fields and composite structures. For Nb3Sn
superconducting magnets, they exhibit significant thermal magnetic instability, known
as "flux jump". This characteristic can generate random voltage spikes during the
excitation process of the magnet, leading to misjudgment of the Quench Detection
System (QDS) and seriously affecting the normal operation of FECR.

To solve this problem, this study uses machine learning algorithms and aims to
build a simplified and efficient recognition model to effectively distinguish the
phenomenon of overshoot and flux jump during the excitation process of Nb3Sn
magnets. Based on the voltage data obtained from multiple excitation processes of
Nb3Sn superconducting hexapole magnets,

this paper extracted 27 quench samples and 25 flux jump samples, and extracted
33 features from each sample. Multiple machine learning algorithms were used to
train and construct these data, and the accuracy of different algorithms was compared
to ultimately explore the best recognition model. The experimental results show that
the model only uses 5 features and achieves 100% classification accuracy on linear
kernel SVM. By using this machine learning model, high accuracy and computational
speed have been achieved in the recognition of magnetic flux jump and quench, which
can provide reference for the optimization of subsequent FECR quench detection

algorithms.



Analysis and Improvement of Generalisability of
Anomaly Detection Methods

& www.isis.stfc.ac.uk

X @isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

Science and
Technology
Facilities Council

ISIS Neutron and
Muon Source
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Application of Machine Learning to Accelerator Operations at SACLA/SPring-8

Hirokazu Maesaka'?, Eito lwai*?, Ichiro Inoue!

XFEL Optimization "
7))
« We developed a Gaussian Process (GP) 2
optimizer for XFEL. %
« The optimizer succeeded in maximizing 5
the XFEL pulse energy. o
-
« We recently developed and installed a g
new high-resolution inline Q
spectrometer.
« The new spectrometer enabled us to
optimize the spectral brightness.

« The spectral brightness was improved
by a factor of 1.7 over the pulse energy
optimization.
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« A thyratron is a high-power switch to drive a pulsed klystron.
» The grid voltage waveform varies with its operation time.

« We are developing a health check algorithm by using the grid
waveform.

« We applied principal component analysis (PCA) to reduce the
dimensionality of the waveform data and support vector machine
(SVM) to classify thyratrons into normal or abnormal.

» This system can emit warning if the grid waveform enters the
abnormal area of the SVM result.

Grid voltage waveforms

Thyratron
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ONLINE OPTIMISATIONS OF LIFETIME AND INJECTION EFFICIENCY IN THE
ESRF EBS STORAGE RING

N. Carmignani, L. Carver, L. Hoummi, S. Liuzzo, T. Perron, S. White, ESRF, Grenoble, France

4th ICFA Beam Dynamics Mini-Workshop on Machine Learning for Particle Accelerators
Gyeongju, South Korea

The European Synchrotron

Operation of EBS:
Online optimisations to make use the
independent sextupoles and
octupoles power supplies

Design of EBS:
Multi-objective optimisations
of sextupoles and octupoles

First optimizer
Matlab based code. It can scan
knobs of all kind of magnets,

minimizing losses measured
with BLM.

1.05 —

Which KNOBS should we use for
online optimisations?

total losses (a.u.)

The idea is that with sextupoles we can
correct off-energy linear optics.
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| _ 5ORM
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p. | ' P Kquad o 2Ksext77h 0.85 |
Singular vectors.
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Knob 12
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Badger + Xopt
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Scalable Global Optimization via
Local Bayesian Optimization

chael Pearce aco ar
University of Warwick Uber Al
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Physics-Informed Surrogates Enhance Data-Driven
Models with Knowledge of Physical Systems
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End-to-End Simulations and ML infrastructure for Light Sources

E-Gun simulation
(OPAL, IMPACT)

Linac simulation (OPAL,
elegant, Mad-X,

Photon generation
(Genesis)

Photon beamline
(SRW, Shadow)

Electron dump
(elegant, mad-x,
etc)

ML Surrogate Model

|° LUME and Sirepo provide complementary integration tools
1° Creating interoperability between these tools will improve the end-to-end |
| simulation infrastructure
| Integrate machine-learning model infrastructure into Sirepo
. Demonstrate model deployment utilizing photon beamline test bench
:_- Provide integration with optimization workflows and controls

/A\ radiasoft

LLRF 2022

Integration

Sirepo Model

Command line
Tools

1/17



Supervised learning for nonlinear corrections
in the LHC ML Correction B1

Current state of nonlinear commissioning in the LHC time

. : . 40000 -

consuming and iterative = Sim
o

" Corr

«© 20000 - Nom

Can ML be used to correct multiple order errors at once
using resonance driving terms (RDTs)?

0 -
0 100 200 300 400 500
Using MADNG to generate up to 30k RDT mm MAE [o] BPM #
samples with random errors 82 times faster ~ Train 0.904 0.157 RMS ARDT before and after correction
than PTC! Test 0.883 0.173 1000
300 — ——
. Sim
Quadratic polynomial regression allows to model 200 | ML Corr
nonlinearities and collinearity in the variables = RM Corr
S 100
Performance yields better results than a traditional response matrix r s
method for simultaneous correction of RDTs 0 L=

o 1 2 3 4 5 6
RDT Error: RMS(A|f013ooo|) le4

Alejandro Borjesson Carazo | Supervised Learning for Nonlinear Corrections in the LHC




Towards Natural Language-dr
Autonomous Particle Accelerate

Tuning v o o\

-

4th ICFA Machine Learning Workshop

Jan Kaiser, Annika Eichler and Anne Lauscher
Gyeongju, 7 March 2024
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An Oversimplified History of Autonomous Accelerator Tuning

From human intelligence over optimisation to artificial intelligence

I’'ll just ask

Let’s use Simplex, ChaptGPT to

BO or RLO!

Last week | could
do this by hand(?) o

DESY. Towards Natural Language-driven Autonomous Particle Accelerator Tuning | 4th ICFA Machine Learning Workshop | Jan Kaiser

Page 2



Let’s Ask ChatGPT to Do It ...

large language models (LLMs)

Can Chat8PT tune a particle accelerator?

How would that be implemented?

DESY. Towards Natural Language-driven Autonomous Particle Accelerator Tuning | 4th ICFA Machine Learning Workshop | Jan Kaiser Page 3



Teaser

Yes and no ...

Yes ... to some extent
GPT 4 (optimisation prompt)

But also no
GPT 3.5 Turbo (tuning prompt)

DESY. Towards Natural Language-driven Autonomous Particle Accelerator Tuning | 4th ICFA Machine Learning Workshop | Jan Kaiser
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Contact

DESY. Deutsches Jan Kaiser
Elektronen-Synchrotron Machine Beam Controls (MSK)

jan.kaiser@desy.de
www.desy.de
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Bayesian Optimal Experimental Design for AGS
Booster Magnet Misalignment Estimation

Booster Magnet Misalignment
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