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Figure 1: Average downtime by system in the Spallation Neutron Source (SNS) 
at the Oak Ridge National Lab.

SNS DOWNTIME BY SYSTEM

RESEARCH DESCRIPTION 

• Capacitors in High-Voltage Converter Modulators (HVCMs) degrade 

over time which causes significant downtime

• Extensive simulation data based on available non-invasive sensor data 

is available

• Modeling HVCM capacitance values with Uncertainty Quantification is 

necessary to provide a reliable early indicator of failure

• <1% in-distribution error 
• <3.5% out-of-distribution error
• Increased model uncertainty for out-of-distribution samples

Distance Preserving Machine Learning for Uncertainty Aware Accelerator Capacitance Predictions 

Steven Goldenberg, Malachi Schram, Kishansingh Rajput, Thomas Britton, 
Chris Pappas, Majdi Radaideh, Jared Walden, Dan Lu, Sarah Cousineau
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Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the DOE under Contract No. DE-AC05-06OR23177. This research 
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MODEL PERFORMANCE

MODEL PREDICTION ERRORS

Figure 4: Violin plots of 
percent errors for each 
capacitor (A, B, C)  over 
each of our data splits. The 
width of each plot denotes 
the density of predictions 
at that error level.

UNCERTAINTY FROM INPUT NOISE

Figure 6: Average 
uncertainty returned by 
our model with increasing 
Gaussian noise applied to 
the training data. 
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Multi Objective Bayesian Opt. of ECR Ion Source

Tuned 6 variables of ECR Ion Source to find:
➢ Max beam current
➢ Smallest beam instabilities
➢ Smallest emittance



Reshaping SRF Cavity Resonance 
Management with Smart Techniques

Faya Wang

Mar 7, 2024

4th ICFA Beam Dynamics Workshop On 
Machine Learning Applications for Particle 
Accelerators, South Korea
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SRF Cavity DMD Test Results
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▪ Cavity Circuit model 

▪ Lorentz pressure distribution on cavity wall

Linear System

Nonlinear Force

▪ Mechanical Modes: 𝝎𝒎, 𝑸𝒎, 𝑲𝒎

𝑃 =
1
4 𝜀0𝐸2 − 𝜇0𝐻2 

Electromagnetic field 

Vibration

Single Mechanical Mode

5 Mechanical Modes

× 5𝐾𝐿



▪ DMD: Dynamic Mode Decomposition
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SRF Cavity DMD Test Results

𝒙𝒌 = 𝒂𝒌 𝒃𝒌
𝑻: system status and actuator inputs

𝑑
𝑑𝑡 𝒙 𝑡 = 𝐹(𝒙 𝑡 ) 𝒙𝒌+𝟏 = 𝑭 𝒙𝒌 𝐹 ≈ 𝑓 based on data 

𝒇 ≈ ෍
𝒋=𝟏

𝑵

𝝃𝒋𝝓𝒋 𝒙 = 𝚵𝝓 𝒙 = 𝑾𝒌(𝑿, 𝒙)

o 𝝓: the feature library of N candidate terms 

that may describe the dynamics

o 𝚵: the coefficients that determine which 

feature terms are active and what 

proportions.

o 𝒌: kernel function

o Data matrices: 𝑿 = 𝒙𝟏 𝒙𝟐  … 𝒙𝒎

▪ Mapping nonlinear problem in large state dimension with kernel function
Linear system: 𝒙𝒌+𝟏 = 𝑾𝒙𝒌
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SRF Cavity DMD Test Results

~ 2.5% test error

Faya Wang, “Enhancing SRF cavity stability and minimizing detuning with data-driven resonance control based on dynamic mode decomposition”, AIP Advances 13, 075104 (2023)



Active Resonance Controller
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With LLRF PID Without LLRF PID

▪ Simulation with 32 mechanical modes

▪ Cavity half bandwidth: 16.25 Hz

▪ Detune std: ~ 1 Hz



4th ICFA beam dynamics Mini-Workshop on Machine Learning Applications for Particle Accelerators

Ø Combining PSO and MOGA and introducing opposition based learning 
and Levy flight, it greatly improves the global exploration capability of 
the algorithm, which can significantly improve the effect of response 
matrix correction and obtain better dynamic performance.

Ø As a linear method, LOCO is easily trapped into local 
minima when facing severe nonlinear response matrix 
correction.
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RL-Based Control Strategies for HIPI Accelerator

◆ Data Process
◆ Build a Surrogate Model
◆ Agent Trained Based on Surrogate Model

Layout of HIPI

Email:suchunguang@impcas.ac.cn

Target High RFQ transmission 
with low beam loss in LEBT

Input 
Parameters 

The current strength of the following 6 
electromagnets, Solenoid 1, Solenoid 
2,Steer 1X,Y, Steer 2 X,Y

Output 
Parameters

Current of ACCT and DUMP
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The control strategy based on RL is faster than manual debugging in beam commission, 
completing hours of manual work in minutes.

RL-Based Control Strategies for HIPI Accelerator

Email:suchunguang@impcas.ac.cn



Optimization design of photocathode injector assisted 
by deep gaussian process

Combined geometric parameters of radio frequency gun and beam element parameters

Sun Zheng，Xin Tianmu

optimizer
element parameters 

inputgeometric parameters assisted

ml evaluator
(deep gaussian process)

optimizing electric field

optimizing beam transport

Objectives：reduce the emittance and bunch length at exit

real evaluator

too many parameters evaluation process time-consuming

Challenge



Study of Orbit Correction by Neural Networks  

In Taiwan Photon Source 

 

Mau-Sen Chiu 
2024/03/07 

Beam Dynamics Group, NSRRC 
1 



The Taiwan Photon Source is designed as a 3 GeV synchrotron 
light source, encompassing a 518.4 m circumference. The lattice 
structure of the storage ring consists of 24 Double-Bend 
Achromat cells. The storage ring is equipped with 172 BPMs and 
72/96 correctors to do orbit correction and control in horizontal 
and vertical planes, respectively. The correction algorithm uses a 
measured orbit response matrix and singular value decomposition 
(SVD) algorithm at present. This traditional method is rooted in 
physics and well-established principles of beam dynamics in 
particle accelerators. In this study, we use neural network model 
to do orbit correction. The training data for the neural networks is 
generated by accelerator toolbox (AT).  

Abstract 
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1. Establish reference orbit (Target Orbit) 
2. Measure Orbit Response Matrix R between BPMs and correctors. 
3. Apply SVD to decompose R, and select the number of singular values  
4. Measure actual orbit - check for bad readings  
5. Compute difference orbit  
6. Compute corrector strength from   
 
7. Check for corrector currents in reasonable range  
8. Apply corrector currents  

Singular values 

It work with difference orbit and corrector changes rather than the absolute orbit and corrector 
values. 
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∆X: Difference Orbit 
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BPM Corrector Corrector BPM 

Orbit Correction by SVD (Traditional) 



Orbit Correction Scheme in TPS Storage Ring 



 Training: 

1. 72 horizontal correctors (HC) strengths within +/- 2.5 µrad are randomly  
    assigned and then get orbits (172 BPMs) by AT: repeat  3000 times. 
2. Build Model by keras: input layer is 172 nodes, hidden layer is 172 nodes, 
     output layer is 72 nodes. 
3. Train the model with AT simulation data. 
4. Save the well-trained model of the neural networks. 
 
 Test: 

5. Generate many orbit distortions by randomly shifting 249 quadrupoles 
    within +/- 3 µm in horizontal plane. 
6. Load the well-trained model of the neural networks 
7. Input the orbit distortions to the neural networks to get the predicted 
    corrector strength 
8. Use the predicted corrector strength to correct the orbit distortion 
    generated by quadrupole misalignment 
9. Iterate step 7 ∼ 8: 3 times 

Simulation of Orbit Correction by Neural Networks 



Training Neural Networks (NN) 

Output: 
72 Horizontal 
corrector  

Input: 
172 BPMs  



Simulation of Orbit Correction by Neural Networks 

In TPS Storage Ring 

Misalignment quantities of 249 quadrupole magnets within +/- 3 µm to generate orbit 
distortion in TPS storage ring simulated by AT. 



Simulation of Orbit Correction by Neural Networks 

In TPS Storage Ring 

Misalignment quantities of 249 quadrupole 
magnets within +/- 3 µm to generate orbit 
distortion in TPS storage ring simulated by 
AT. 

Orbit correction by neural network: Red is 
the orbit before correction (BC), green, 
magenta, and blue are the orbit after 
correction (AC), iterate 3 times (AC-1, AC-
2, AC-3). 



Demonstration 

Orbit Correction by Machine Learning 



APPENDIX 



115 m, 1.5 GeV 

30 HC (±200 to 300 mA), 54 BPM, 1500 data sets 
Initial Orbit 



History of Neural Networks 

RBM: Restricted Boltzmann Machine 
DBN: Deep Belief  Network 

Ref: Deep learning in optical metrology: a review, Chao Zuoet al. Light: Science & Applications (2022) 11:39  

CNN: Convolution Neural Network 
RNN: Recurrent Neural Network 



Ref: An Introductory Review of Deep Learning for Prediction Models With Big Data, 

Frontiers in Artificial Intelligence, 28 Feb. 2020 

Popular Deep Learning & Software 



Input X 

Update 
 W and B 

Target Y 

Minimize loss function 

Optimizer : 

No Yes Well-trained 
Model 

� 𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑖𝑖 2
𝑛𝑛

𝑖𝑖=1

 

Training Data Predict y 

Is loss 
function  

minimum ?  

• Initialize weights "randomly" 
• For all training epochs 

• for all input-output in training set 
• using input and compute output : forward propagation 
• compare computed output with training output -> calculate loss function 
• update weights (backpropagation) to improve output -> minimize loss function 

• if accuracy is good enough, stop 

Training by Backpropagation 

Forward Propagation 

Back Propagation 

https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/ 

Input Hidden Output 

How to determine weights and bias ? 

https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
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▶ Software Packages: Keras, Tensorflow, Python. 
▶ Data collection: Scaling and normalizing data, then splitting data into training, 
    validation and test sets.  
▶ Build a neural network: Select an appropriate neural network architecture (e.g. 
   feedforward, recurrent, convolution, et al) based on problem type (e.g. regression, 
   classification, et al.), and assign the number of layers, neuron number in each  
   layer, activation function (e.g. sigmoid, tanh, ReLu, et al. ). 
▶ Compile the Model: Specify the loss function (e.g. mean square error, et al.),  
   optimizer (e.g. adam, sgd, et al.) that adjusts the model’s weights and bias. 
▶ Fit (Training) Model (minimize loss function): Specify the batch size, the  
    number of epochs (training iteration times), and using training set of data. 
▶ Evaluate Model: Evaluate the model’s performance by using validation data set. 
▶ Fine-Tuning Hyperparameter: Training model with different learning rate  
    (step size during training), batch size (number of data sets used in each iteration of 
    training, , number of layers, neurons per layer, Epoch (training times of passing 
    data sets through network model), to avoid underfitting and overfitting. 
▶ Make Predictions: Use the trained model to make prediction on test data. 

Workflow of Neural Networks 



import numpy as np 
from keras.models import Sequential 
from keras.layers.core import Dense 
 
# the four different states of the XOR gate 
training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32") 
 
# the four expected results in the same order 
target_data = np.array([[0],[1],[1],[0]], "float32") 
# Build a model 
model = Sequential() 
model.add(Dense(16, input_dim=2, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 
 
model.compile(loss='mean_squared_error', 
              optimizer='adam', 
              metrics=['binary_accuracy']) 
# start to train 
model.fit(x=training_data, y=target_data, nb_epoch=500, verbose=2) 
# Prediction 
print model.predict(training_data).round() 

Python Code by Keras for XOR 

https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html 

Dense: Fully connected 

https://keras.io/api/models/model_training_apis/ 

https://keras.io/api/metrics/ 

https://keras.io/api/optimizers/ 
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Dynamic vacuum and 
temperature predictions for 

informed anomaly detection at the 
CERN-SPS

F.M. Velotti, M. Barnes, G. Favia, V. Kain



Motivation

→Moving towards High Luminosity LHC à
intensity effects induce high stress on 
sensitive equipment, e.g. kickers, septa…

→Electron cloud, beam induced heating 
main responsible

→ Important source of unavailability of the 
CERN-SPS
o If kickers get too hot, risk to not be able to 

inject or damage them è cool down needed
o If vacuum rises too much, high risk of 

breakdown in high voltage elements 

→~50% of call to stand-by service “just” for 
resets due to high vacuum/high 
temperature interlock trip

Induced 
heating

[Source]

http://dx.doi.org/10.1103/PhysRevSTAB.8.094401


Possible solutions
→Developing “intelligent” system to:

o Predict machine behavior for given beam properties
o Determine normal and abnormal operation 
o Identify breakdowns from vacuum readings 
o Define optimal machine usage 

→Gradient boosting algorithms very successful at 
this:
o Fast training and fast predictions
o Capable of handle complex 

responses:
Δ" = $!%&"'" # 	)(|Γ -.! #/ 0|| -.! )
23
24 =

-
56%

7#3
78# +

Δ"
56%

o Possibility to implement in 
continuous learning à fight 
concept drift/conditioning of 
different elements 



Pipeline for ML 
and control 
applications

Badger/Xopt
optimization 

NNs for ID orbit 
distortion 

Experience with ML-driven applications 
at PETRA III

The ACSS (Accelerator Control and 
Simulation Services) allows for 
scheduling and orchestrating of 
multiple intelligent agents, training and 
tuning of ML models, handling of data 
streams and for software testing.

Optimizations of lifetime and 
injection efficiency were performed 
and compared with the results 
obtained with the current manual 
procedures. 

The combined impact of multiple IDs 
moving at the same time is non-linear. NNs 
accurately predict the transverse 
displacement of the beam along the ring 
for any given ID configuration.



Reinforcement Learning Based Radiation Optimization at a Linear Accelerator, Chenran Xu

Using Reinforcement Learning for CSR radiation optimization at a Linac

modeled in Cheetah.       / Ocelot Beam distribution

CSR pulse

Bunch length
!!

Peak field
""#$

Formulating the RL task

Observation accelerator setting ["!" , $#$%&'()]
+ beam parameters %* , &+,-

Action Δ["!" , $#$%&'()]

Reward • Bunch length: elu(%.$/)0$123 − %*)
• CSR field: &+,-

Reward

Action Obs.

PPO agent 
trained in SB3



Improving Surrogate Model Performance for Sparse Outputs 
in the Spatial Domain

Concatenating 1D-
fourier feature 
mappings (proven 
to be effective in 2D 
applications) of the 
spatial dimension 
with the inputs to 
the model to 
improve resolution

𝛾 𝑥 = 𝑐𝑜𝑠 2𝜋𝐵𝑥 , 𝑠𝑖𝑛 2𝜋𝐵𝑥 𝑇

Where 𝐵 ∈  𝑅𝑚×𝑑 , with 𝑚 being the embedding 
dimension

Increasing the Embedding Dimension (m) decreases MSE 
and Peak Error, as well as reducing errors between 

predicted peak maxima and the overall cumulative loss.

Also improves stability of peak predictions in sparse 
outputs

Accurate estimates of where beam loss 
occurs is important both for overall 
optimisation and personnel/machine 
protection

BUT adds a high frequency component to the output 
prediction which is non-physical for smoother functions.



KIT – The Research University in the Helmholtz Association www.kit.edu

The Reinforcement Learning for 
Autonomous Accelerators collaboration
https://rl4aa.github.io/

§ Connect RL enthusiasts in the 
particle accelerators community 
and share our experience.

§ Teach fundamental RL concepts 
and show practical accelerator 
applications.

§ Discuss the current challenges of 
developing RL algorithms for 
particle accelerators.

§ Be a community!

Join our 
Discord 
server

Mission
Workshops every year

RL4AA’23

RL4AA’24

https://rl4aa.github.io/


4th ICFA Machine Learning Workshop

Reinforcement Learning for 
Intensity Tuning at Large FEL 
Facilities

Jan Kaiser, Annika Eichler, Auralee Edelen, Daniel Ratner, Malachi Schram and Kishansingh Rajput
Gyeongju, 7 March 2024
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• Maximise FEL intensity using 14 quadrupole magnets

• Challenges:
• Slow simulation -> Cheetah and neural network surrogate modelling
• High dimensionality and easy failure -> Curriculum learning

FEL Intensity Tuning at LCLS
Reinforcement learning-trained optimisation (RLO)

Backends:

RL Agent
(Stable Baselines3)

Action
(quadrupole settings)

Observation
(Quadrupole settings 
+ intensity)

Reward
(based on intensity)

Ultimately also
transfer to 
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Results with PPO
It works!

• Proximal Policy Optimisation (PPO) 
algorithm from Stable Baselines3

• Training for 50 Million environment 
interactions

• 1 day 16 hours on a HPC cluster node
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Gradient-based Reinforcement Learning
Significantly improving sample-efficiency and reducing training times

We are using Cheetah!

Cheetah supports 
automatic 
differentiation.

Gradient-based RL with 
true policy gradient.

Achieve same 
performance in 45x 
fewer samples.



Contact

 Deutsches 
Elektronen-Synchrotron

www.desy.de

Jan Kaiser
Machine Beam Controls (MSK)
jan.kaiser@desy.de

mailto:jan.kaiser@desy.de
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Trust Region Bayesian Optimization for Online Accelerator Control

Trust region BO (TurBO):
Global à local BO optimizer
Scales well to high-dimensional 
problems



Development of beam transport system optimization method
using VAE and Bayesian optimization

Y. Morita, T. Nishi, T. Nagatomo, Y. Nakashima 

Optimize the entire accelerator facility at once
Ultimate goal

There are too many parameters
But …

Reduce the number of parameters using VAE

We have already started experiments with Low Energy Beam Transport!

Input：
Acc. data Latent Variable ZNN

Encoder

Parameters

NN
Decoder

Output：
Acc. data

Generating 
Latent Variable

Recovering Input Parameters

Optimize z using 
Bayesian optimization

Dimensional reduction

Optimization using z and decoder
VAE

Method



 

 

Simulation methods of 3D coupled storage ring based on SLIM formalism
ZHAO Jingyuan, TANG Chuanxiang, DENG Xiujie, PAN Zhilong, LI Zizheng, CHEN Liwei, Tsinghua University, Beijing, China 

Alexander Chao, Tsinghua University, Beijing, China, also at Stanford University, Stanford, USA

SLIM Formalism
SLIM is a linear storage ring beam dynamic formalism based on 
transport matrix and eigen-analysis. It can self-consistently analyze 
linear coupled/uncoupled storage ring and give the following results 
without using any courant-snyder auxiliary functions.
· All the linear dynamics
· Closed orbit disortion
· Equilibrium beam size and shape

Generalized longitudinal strong focusing

We have extended SLIM and processed all elements with thick lens 
analysis, which speeds up SLIM code calculation.  SLIM can thus be 
used as a linear self-consistent physical computing core for MOGA 
and machine learning.

SLIM Formalism

M(s2|s1)6×6 eigenvectors linear dynamics

Courant-Snyder Formalism

M(s2|s1)2×2 auxiliary functions linear dynamics

Generalized longitudinal strong focusing (GLSF) scheme aims to 
produce coherent EUV radiation turn by turn in laser-driven storage 
rings. It invokes transverse-longitudinal coupling and then attains a 
short bunch length with significantly reduced modulation laser power.

We present a method for analyzing local lattice design with SLIM, and 
combine SLIM and MOGA to carry out lattice design of GLSF.  Finally, 
we achieve a bunch length of less than 5nm at the storage ring 
radiator.





Research on Recognition of Quench and Flux 
Jump Based on Machine Learning 

The Institute of Modern Physics is developing the Fourth generation of Electron 

Cyclotron Resonance (FECR), which requires Nb3Sn superconducting hexapole 

magnets with higher magnetic fields and composite structures. For Nb3Sn 

superconducting magnets, they exhibit significant thermal magnetic instability, known 

as "flux jump". This characteristic can generate random voltage spikes during the 

excitation process of the magnet, leading to misjudgment of the Quench Detection 

System (QDS) and seriously affecting the normal operation of FECR.  

To solve this problem, this study uses machine learning algorithms and aims to 

build a simplified and efficient recognition model to effectively distinguish the 

phenomenon of overshoot and flux jump during the excitation process of Nb3Sn 

magnets. Based on the voltage data obtained from multiple excitation processes of 

Nb3Sn superconducting hexapole magnets,  

this paper extracted 27 quench samples and 25 flux jump samples, and extracted 

33 features from each sample. Multiple machine learning algorithms were used to 

train and construct these data, and the accuracy of different algorithms was compared 

to ultimately explore the best recognition model. The experimental results show that 

the model only uses 5 features and achieves 100% classification accuracy on linear 

kernel SVM. By using this machine learning model, high accuracy and computational 

speed have been achieved in the recognition of magnetic flux jump and quench, which 

can provide reference for the optimization of subsequent FECR quench detection 

algorithms. 



Analysis and Improvement of Generalisability of 
Anomaly Detection Methods



Application of Machine Learning to Accelerator Operations at SACLA/SPring-�
Hirokazu Maesaka�,�, Eito Iwai�,�, Ichiro Inoue�        �: RIKEN SPring-� Center,  �: Japan Synchrotron Radiation Research Institute (JASRI)
XFEL Optimization
• We developed a Gaussian Process (GP) optimizer for XFEL.
• The optimizer succeeded in maximizing the XFEL pulse energy.
• We recently developed and installed a new high-resolution inline spectrometer.
• The new spectrometer enabled us to optimize the spectral brightness.
• The spectral brightness was improved by a factor of �.� over the pulse energy optimization.

Failure Prognosis of Thyratrons
• A thyratron is a high-power switch to drive a pulsed klystron.
• The grid voltage waveform varies with its operation time.
• We are developing a health check algorithm by using the grid waveform.
• We applied principal component analysis (PCA) to reduce the dimensionality of the waveform data and support vector machine (SVM) to classify thyratrons into normal or abnormal.
• This system can emit warning if the grid waveform enters the abnormal area of the SVM result.
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Scatter plots of �st and �nd principal component values

New Thyratron

Training data of new thyratrons Training data of failed thyratrons Test data
(Intermediate thyratrons)

SVM boundary
Normal Abnormal

Failed Thyratron
Thyratron



ONLINE OPTIMISATIONS OF LIFETIME AND INJECTION EFFICIENCY IN THE 
ESRF EBS STORAGE RING

N. Carmignani, L. Carver, L. Hoummi, S. Liuzzo, T. Perron, S. White, ESRF, Grenoble, France
4th ICFA Beam Dynamics Mini-Workshop on Machine Learning for Particle Accelerators
Gyeongju, South Korea

Design of EBS:
Multi-objective optimisations 
of sextupoles and octupoles 

Operation of EBS:
Online optimisations to make use the 

independent sextupoles and 
octupoles power supplies

Which KNOBS should we use for 
online optimisations? 

The idea is that with sextupoles we can 
correct off-energy linear optics.

We can define some
pseudo-sextupolar
singular vectors:

• Sine waves of sextupoles
• Sine waves of octupoles
• Skew quads eigenvalues

for coupling

Other knobs
tested:

First optimizer
Matlab based code. It can scan 
knobs of all kind of magnets, 
minimizing losses measured
with BLM. 

24 sextupolar knobs and 4 octupolar knobs selected

Badger + Xopt
EASY INTERFACE
EASY SETUP
EASY INSTALLATION
MANY OPTIMIZERS

Developed at

Different optimisers 
tested within badger. 
Trust Region Bayesian 
Optimization (TuRBO) 
selected to be the 
most effective and 
fast.

Badger is also used to optimise 
injection efficiency. 
Injection elements, transfer
line magnets, timing
parameters can be optimized 
to maximize the injection 
efficiency measured with 8
injection shots.
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Physics-Informed Surrogates Enhance Data-Driven 
Models with Knowledge of Physical Systems

Trained PINN  (K = 1.6e-5,  Beta = 0.34)
Uniform Focusing Channel Dataset

PINNs can be trained in challenging high space charge 
regime. Physics-informed priors significantly improve 
the accuracy of the surrogate model.
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End-to-End Simulations and ML infrastructure for Light Sources

E-Gun simulation 
(OPAL, IMPACT)

Linac simulation (OPAL, 
elegant, Mad-X, 

IMPACT)

Photon generation 
(Genesis)

Photon beamline 
(SRW, Shadow)

Electron dump
(elegant, mad-x, 

etc)

ML Surrogate Model 
Integration

• LUME and Sirepo provide complementary integration tools 
• Creating interoperability between these tools will improve the end-to-end 

simulation infrastructure 
• Integrate machine-learning model infrastructure into Sirepo 
• Demonstrate model deployment utilizing photon beamline test bench
• Provide integration with optimization workflows and controls

Sirepo Model Omega

LUMECommand line 
Tools
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Set R2 MAE [σ]
Train 0.904 0.157
Test 0.883 0.173

Current state of nonlinear commissioning in the LHC time 
consuming and iterative

Can ML be used to correct multiple order errors at once 
using resonance driving terms (RDTs)? 

Supervised learning for nonlinear corrections 
in the LHC

Performance yields better results than a traditional response matrix
method for simultaneous correction of RDTs

Using MADNG to generate up to 30k RDT 
samples with random errors 82 times faster 
than PTC!

Quadratic polynomial regression allows to model 
nonlinearities and collinearity in the variables



4th ICFA Machine Learning Workshop

Jan Kaiser, Annika Eichler and Anne Lauscher
Gyeongju, 7 March 2024

Towards Natural Language-driven 
Autonomous Particle Accelerator 
Tuning
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An Oversimplified History of Autonomous Accelerator Tuning
From human intelligence over optimisation to artificial intelligence 

Last week I could 
do this by hand(?)

Let’s use Simplex, 
BO or RLO!

I’ll just ask 
ChaptGPT to 
do it …
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Let’s Ask ChatGPT to Do It …
Questions 

Can ChatGPT tune a particle accelerator?

How would that be implemented?

large language models (LLMs)
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Teaser
Yes and no …

Come to my 
poster!

Yes … to some extent
GPT 4 (optimisation prompt)

But also no
GPT 3.5 Turbo (tuning prompt)



Contact

 Deutsches 
Elektronen-Synchrotron

www.desy.de

Jan Kaiser
Machine Beam Controls (MSK)
jan.kaiser@desy.de

mailto:jan.kaiser@desy.de


Bayesian Optimal Experimental Design for AGS 
Booster Magnet Misalignment Estimation



Comparing Gradient Descent vs 
Standard Methods (including Bayesian 

Optimisation) on a “real” Problem



Rapid Tuning of Synchrotron Surrogate Models at the Recycler Ring

Jason St. John
Accelerator Division
4th ICFA Beam Dynamics Mini-Workshop Machine Learning Applications for Particle Accelerators
2024.03.05-08

FERMILAB-SLIDES-24-0026-AD



Recycler Ring is essential to 
Fermilab:
megawatt proton beams → 
high-intensity neutrino beams

The Recycler Ring and High-Power Neutrino Beams

2024.03.05-08 Jason St. John | 4th ICFA Beam Dynamics Mini-Workshop MaLAPA, 경주, 대한민국2

This manuscript has been authored by Fermi 
Research Alliance, LLC under Contract No. 
DE-AC02-07CH11359 with the U.S. Department of 
Energy, Office of Science, Office of High Energy 
Physics.



Recycler Ring is a permanent-magnet storage ring 

Matched to Main Injector 8 GeV proton KE

The Recycler Ring

2024.03.05-08 Jason St. John | 4th ICFA Beam Dynamics Mini-Workshop MaLAPA, 경주, 대한민국3


Magnetic shim plates were installed to correct for  
undesirable multiple moments observed in the Recycler.

The Recycler Ring Multipole Shims

2024.03.05-08 Jason St. John | 4th ICFA Beam Dynamics Mini-Workshop MaLAPA, 경주, 대한민국4

“Computer Generated End Shims for Recycler 
Ring Magnets” C.N. Brown, G.W. Foster, G. P. 
Jackson, J. T. Volk, Proceedings of the 1999 
Particle Accelerator Conference, New York, 1999



The Recycler Ring Chromaticity

2024.03.05-08 Jason St. John | 4th ICFA Beam Dynamics Mini-Workshop MaLAPA, 경주, 대한민국5

Challenge: 

Tune simulated chromaticity to 
better match observed, using 
only additive corrections of 
multipole moments at shims.

Can small errors in shim plate 
shape account for the observed 
difference?



The Recycler Ring Chromaticity

2024.03.05-08 Jason St. John | 4th ICFA Beam Dynamics Mini-Workshop MaLAPA, 경주, 대한민국6

Challenge: 

Tune simulated chromaticity to 
better match observed, using 
only additive corrections of 
multipole moments at shims.

Can small errors in shim plate 
shape account for the observed 
difference?

Yep! very fast with POUNDERS



Comparison to Nelder-Mead 
downhill simplex method (NM).
Both are set to minimize the 
sum of squared errors.

Different inputs:
N-M: sum sq. err’s
POUNDERS: vector of sq. 
err’s

POUNDERS converges faster 
(~60 vs ~100 steps)

2024.03.05-08 Jason St. John | 4th ICFA Beam Dynamics Mini-Workshop MaLAPA, 경주, 대한민국7

Parameter Optimization with POUNDERS

Best-value vs. 
number of 
simulation calls

Sextupole, and
Ocutople


Final parameter values very close to NM result

2024.03.05-08 Jason St. John | 4th ICFA Beam Dynamics Mini-Workshop MaLAPA, 경주, 대한민국8

H sext. V sext. H octu. V octu.

POUNDERS -0.00107 -0.00099 0.37075 0.40921

NM -0.00108 -0.00097 0.34959 0.45167



A tool for self-updating accelerator models?

2024.03.05-08 Jason St. John | 4th ICFA Beam Dynamics Mini-Workshop MaLAPA, 경주, 대한민국9

Best-value vs. 
number of 
simulation calls

Sextupole, and
Ocutople, and 
Decapole


