

## Reinforcement Learning-trained Optimisers and Bayesian Optimisation for Online Continuous Tuning

Jan Kaiser, **Chenran Xu**, Annika Eichler, Andrea Santamaria Garcia, Oliver Stein, Erik Bründermann, Willi Kuropka, Hannes Dinter, Frank Mayet, Thomas Vinatier, Florian Burkart, Holger Schlarb

4th ICFA Beam Dynamics Mini-Workshop on Machine Learning Applications for Particle Accelerators



## **Reinforcement Learning-trained Optimiser (RLO)**

RL is a powerful learning paradigm, where an RL agent learns through trial-and-error interactions with the environment to maximize the cumulative reward

The RL-loop:

• The environment is in state  $s_t$ , agent gets observation  $o_t$ 

The agent chooses the next action based on its policy  $\pi(s_t) = a_t$ , which is a neural network in deep RL

• The environment transitions to  $s_t \rightarrow s_{t+1}$ , receives reward  $r_t = r(s_t, a_t)$ 



https://lilianweng.github.io/posts/2018-02-19-rl-overview/

**RLO**: use RL to (pre-)train the agent, and deploy the agent as an optimiser for the online-tuning problem

## **Bayesian Optimisation (BO)**



## Choosing an optimiser is a trade-off

Apart from the performance metrics (convergence speed, results), one should also consider:

|                                                                                 | RLO                                    | ВО                                                         |
|---------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|
| Engineering cost: resources needed before deployment                            | high                                   | low                                                        |
| Inference cost: computational power needed at application time, inference speed | low / ~ ms                             | high / 0.1 ~ 1 s                                           |
| Expertise at application time:                                                  | low (nothing to be changed at runtime) | low - medium ( <i>small</i><br>hyperparameter adjustments) |

Here we consider the specific case

- RLO: model-free algorithm, with pre-training, NN policy
- BO: without informed prior, training from scratch, standard acquisition functions

Assumes stationary conditions

## The ARES linear accelerator

Small research accelerator at DESY's SINBAD facility



5 05.03.24 Reinforcement Learning-trained Optimisers and Bayesian Optimisation for Online Continuous Tuning, 4th ICFA ML Workshop Chenran Xu

## **ARES Experimental Area (EA) beam tuning task**

- Task: focus and position the electron beam
- Actuators: 3 quadrupole magnets + 2 corrector magnets
- Observation: beam image on the diagnostic screen



## Formulating ARES-EA as an RL task

#### **Observations**

• Magnet Settings 
$$u = [k_{Q1}, k_{Q2}, k_{Q3}, \theta_v, \theta_h]$$

- Current Beam  $b^{(\text{Current})} = (\mu_x, \sigma_x, \mu_y, \sigma_y)^{(C)}$
- Target Beam  $b^{(\text{Target})} = (\mu_x, \sigma_x, \mu_y, \sigma_y)^{(\text{T})}$

#### Action

Changes to the current magnet setting  $a = \Delta u$  (max step size 10%)



## Objective

MAE (mean absolute error)  $O(u_t) = \frac{1}{4} \left| b_t^{(\text{Current})} - b_t^{(\text{Target})} \right|_1$ 

#### Reward

- Differential mode  $r(s_t) \propto \ln(O(u_t)) \ln(O(u_{t-1}))$  earlier
- Feedback mode  $r(s_t) \propto -O(u_t)$
- + transformation (clipping, ...)
- + additional terms (on-screen, magnet changes, ...)

#### Partially observable Markov decision process (POMDP)

Note: see tutorial for more optional components in the reward definition

current

State *s* = Observation + Hidden variables (incoming beam, magnet and screen misalignments)

## **Reinforcement learning implementation framework**



Jan Kaiser

## **RL-trained optimiser successfully solves the task**

RLO trained with **domain randomisation** in simulation can be deployed to the **real-world** ARES accelerator with **zero-shot learning** 



(a) Cropped diagnostic screen image at different steps with high beam intensity in red, low intensity in blue and medium intensity in white.



# **ARES-EA** as an optimisation task

### **Observations**

- Magnet Settings  $u = [k_{Q1}, k_{Q2}, k_{Q3}, \theta_v, \theta_h]$
- Current Beam  $b^{(\text{Current})} = (\mu_x, \sigma_x, \mu_y, \sigma_y)^{(C)}$
- Target Beam  $b^{(\text{Target})} = (\mu_x, \sigma_x, \mu_y, \sigma_y)^{(\text{T})}$

#### Action (GP input)

Direct magnet settings a = u (max step size 10% as in RL)

#### **Objective** (GP output)

Log-MAE (mean absolute error)  $O(u_t) = -1 * \log \left(\frac{1}{4} \left| b_t^{(\text{Current})} - b_t^{(\text{Target})} \right|_1 \right)$ 



#### Applying BO to center and focus the beam



## **RLO and BO applied at ARES**

CH RLO smoothly converges to the target Steerers Action beam parameters, because it implicitly contains the model information Q3 ladrupoles ã (e) 2 **Observation** BO explores the model on-the-fly and z, demonstrated more noisy behaviour 1.5 during the tuning steps 1.0 0.5



## Benchmarking different optimisers' performance

Simulation (dashed) & real world (solid)

- RLO: best final beam parameters and fastest convergence overall
- BO: no performance degrade in realworld

## Simulation only

- Extremum seeking: decay of amplitude needed for convergence
- Nelder-Mead simplex: often get stuck in the local optima
- Random-search



The envelopes show the 95 % CL over 300 simulation and 22 real-world trials

## Behaviour in a non-stationary system

RLO quickly adapts to changes of the env. hidden state, as a robust feedback controller

 BO struggles to deal with changes in the system (violating the GP assumption)

**Note**: BO can better adapt with slow drifts when **including time information** into the kernel



## **Running RLO as a feedback**

RLO can also adapt to **changes of the underlying system** to some extent. Example: 1 of the 3 quadrupoles fails (strength goes to zero)



## Conclusion

15

05.03.24



HELMHOLTZ

- Pre-trained RLO can be directly deployed at real machine with zero-shot transfer. It is faster and achieves best results among the compared methods.
- BO can be applied as a turn-key solution and works well on the common tuning task.
- Both methods have potential for better performance
  - RL: reducing the upfront-engineering effort & sample requirements by using model-based RL or meta RL.
  - BO: faster convergence and better tuning results using methods tailored to the task, e.g. NN-/physics-prior GP, adaptive kernel,...





Reinforcement Learning-trained Optimisers and Bayesian Optimisation for Online Continuous Tuning, 4th ICFA ML Workshop

## Next up: hands-on tutorial

- We will be looking at the RL implementation details, and the design choices we faced for the ARES-EA task
- GitHub link: <u>https://github.com/RL4AA/rl-tutorial-ares-basic</u>

## **Backup slides**

## **Objective space exploration comparison**



# Our custom BO implementation demonstrates similar performance as the Xopt implementations



## Performance for different target beam parameters



#### 20 05.03.24 Reinforcement Learning-trained Optimisers and Bayesian Optimisation for Online Continuous Tuning, 4th ICFA ML Workshop

Chenran Xu

#### 21 05.03.24 Reinforcement Learning-trained Optimisers and Bayesian Optimisation for Online Continuous Tuning, 4th ICFA ML Workshop Chenran Xu