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Reinforcement Learning-trained Optimiser (RLO)

The RL-loop:

The environment is in state 𝒔𝒕, agent gets observation 𝒐𝒕

The agent chooses the next action based on its policy 
𝝅 𝒔𝒕 = 𝒂𝒕, which is a neural network in deep RL

The environment transitions to 𝒔𝒕 → 𝒔𝒕"𝟏, receives reward 
𝒓𝒕 = 𝒓(𝒔𝒕, 𝒂𝒕)

https://lilianweng.github.io/posts/2018-02-19-rl-overview/ 

RL is a powerful learning paradigm, where an RL agent learns through 
trial-and-error interactions with the environment to maximize the 

cumulative reward

RLO:  use RL to (pre-)train the agent, and deploy the agent as an optimiser for the online-tuning problem  

https://lilianweng.github.io/posts/2018-02-19-rl-overview/
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Bayesian Optimisation (BO)

The BO-loop:

Build a Gaussian Processes (GP) model using the 
observation dataset 𝑁$ = {(𝑥% , 𝑦%), 𝑖 = 1… 𝑡} 

Construct an acquisition function 𝒂(𝒙) using the 
GP model, to guide the exploration (experiments)

Evaluate the new setting proposed by the acquisition 
function 𝒙𝒕"𝟏 = 𝐚𝐫𝐠𝐦𝐚𝐱𝒙	𝒂(𝒙) and observe 𝑦$"'

BO is a sequential algorithm for global optimization of a black-box objective function     
𝐦𝐚𝐱
𝒙∈𝑵

	𝒇(𝒙) Unknown function

Set of observations

Acquisition function

Unknown function
GP model
Observations
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RLO BO

Engineering cost: resources needed before 
deployment

high low

Inference cost: computational power 
needed at application time, inference speed

low / ~ ms high /  0.1 ~ 1 s

Expertise at application time: low (nothing to be 
changed at runtime)

low - medium (small 
hyperparameter adjustments)

05.03.244

Choosing an optimiser is a trade-off

Here we consider the specific case
• RLO: model-free algorithm, with pre-training, NN policy
• BO:  without informed prior, training from scratch, standard acquisition functions

Apart from the performance metrics (convergence speed, results), one should also consider: 

Assumes stationary conditions
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The ARES linear accelerator

Q1

Q2

CV

CH

Q3

Diagnostic screen
station

Electron beam

Small research accelerator at DESY’s SINBAD facility

Properties Target Values
Charge 0.01 - 200 pC
Momentum 50 -155 Mev/c
Momentum Spread 1,00E-04
Transverse emittance < 0.8 π.mm.mrad
Duration Sub-fs to ≈ 10 fs

Courtesy: Annika Eichler
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ARES Experimental Area (EA) beam tuning task

RL-trained
policy

BO
implementation

(Changes to)
magnet settings

Observed beam
parameters

Target beam
parameters

Operator

Quadrupole
magnet

Steering
magnet

Steering
magnet

Quadrupole
magnet

Quadrupole
magnet Camera looking

at diagnostic screen

Incoming electron
beam

Task: focus and position the 
electron beam 
Actuators: 3 quadrupole 
magnets + 2 corrector 
magnets
Observation: beam image on 
the diagnostic screen
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Formulating ARES-EA as an RL task

Objective
MAE (mean absolute error)

𝑂(𝑢!) =
1
4
𝑏!
(#$%%&'() − 𝑏!

(*+%,&()

-

Reward
Differential mode   𝑟 𝑠$ ∝ 	ln(𝑂 𝑢$ ) − ln(𝑂 𝑢$(' )
Feedback mode    𝑟(𝑠$) ∝ −𝑂(𝑢$)

+ transformation (clipping, ...)
+ additional terms (on-screen, magnet changes, ...)

Action
Changes to the current magnet setting
𝑎 = Δ𝑢	 (max step size 10%)

Observations

Magnet Settings   𝑢 = 	 [𝑘.-, 𝑘./, 𝑘.0, 𝜃1, 𝜃2] 

Current Beam      𝑏(#$%%&'() = 𝜇3 , 𝜎3 , 𝜇4 , 𝜎4
(#)

Target Beam        𝑏(*+%,&() = 𝜇3 , 𝜎3 , 𝜇4 , 𝜎4
(*)

Partially observable Markov decision process (POMDP)

State 𝑠	 = Observation + Hidden variables (incoming beam, magnet and screen misalignments)

Note: see tutorial for more optional 
components in the reward definition 

earlier
current
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Reinforcement learning implementation framework

Action

Reward

Observation

ARES EA
Gymnasium environment

Set desired beam (via API or GUI)

Real-world backend
Start

Simulation backend
Read

Accelerator
control system

Training using Stable Baselines3

Result

Particle accelerator
simulation (Cheetah)

Run (via API or GUI)

Write

Environment backend

Check out Jan Kaiser’s talk on Friday on Cheetah
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RL-trained optimiser successfully solves the task

RLO trained with domain randomisation in simulation can be deployed to 
the real-world ARES accelerator with zero-shot learning
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ARES-EA as an optimisation task

Objective (GP output)
Log-MAE (mean absolute error)
𝑂 𝑢! = −1	 ∗ 	log	(-

5
𝑏!
(#$%%&'() − 𝑏!

(*+%,&()

-
)

Action (GP input)
Direct magnet settings
𝑎 = 𝑢	 (max step size 10% as in RL)

Observations

Magnet Settings   𝑢 = 	 [𝑘.-, 𝑘./, 𝑘.0, 𝜃1, 𝜃2] 

Current Beam      𝑏(#$%%&'() = 𝜇3 , 𝜎3 , 𝜇4 , 𝜎4
(#)

Target Beam        𝑏(*+%,&() = 𝜇3 , 𝜎3 , 𝜇4 , 𝜎4
(*)

Applying BO to center and focus the beam
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RLO and BO applied at ARES

RLO smoothly converges to the target 
beam parameters, because it implicitly 
contains the model information

BO explores the model on-the-fly and 
demonstrated more noisy behaviour 
during the tuning steps
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Benchmarking different optimisers’ performance
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Simulation (dashed) & real world 
(solid)

RLO: best final beam parameters 
and fastest convergence overall
BO: no performance degrade in real-
world 

Simulation only
Extremum seeking: decay of 
amplitude needed for convergence
Nelder-Mead simplex: often get 
stuck in the local optima
Random-search

The envelopes show the 95 % CL over 300 simulation and 22 real-world trials
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Behaviour in a non-stationary system
Sudden incoming beam 
change at step 40

Continuous incoming 
beam changeRLO quickly adapts to 

changes of the env. 
hidden state, as a 
robust feedback 
controller

BO struggles to deal 
with changes in the 
system (violating the 
GP assumption)

Note: BO can better adapt with 
slow drifts when including time 
information into the kernel
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Running RLO as a feedback

RLO can also adapt to changes of the underlying system to some extent.
Example: 1 of the 3 quadrupoles fails (strength goes to zero)
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Conclusion

Read the paper

https://arxiv.org/
abs/2306.03739  

Pre-trained RLO can be directly deployed at real machine 
with zero-shot transfer. It is faster and achieves best results 
among the compared methods.

BO can be applied as a turn-key solution and works well on 
the common tuning task.

Both methods have potential for better performance
RL: reducing the upfront-engineering effort & sample requirements 
by using model-based RL or meta RL.
BO: faster convergence and better tuning results using methods 
tailored to the task, e.g. NN-/physics-prior GP, adaptive kernel,...

https://arxiv.org/abs/2306.03739
https://arxiv.org/abs/2306.03739
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We will be looking at the RL implementation details, and the design choices we faced 
for the ARES-EA task

GitHub link: https://github.com/RL4AA/rl-tutorial-ares-basic 

05.03.2416

Next up: hands-on tutorial

https://github.com/RL4AA/rl-tutorial-ares-basic


Chenran XuReinforcement Learning-trained Optimisers and Bayesian Optimisation for Online Continuous Tuning,  4th ICFA ML Workshop05.03.2417

Backup slides
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Objective space exploration comparison
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BO exploring the 
region
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Ours
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Our custom BO implementation demonstrates similar 
performance as the Xopt implementations
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Performance for different target beam parameters 
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RLO prefers small-medium beam sizes BO performance rather uniform across the space

Small boxes: beam positions on the screen
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