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Background

* The Fourth generation of Electron Cyclotron Resonance (FECR), which is currently being developed by the Institute of Modern Physics, uses Nb3Sn
superconducting hexapole magnets with higher magnetic fields and composite structures.

 However, For Nb3Sn superconducting magnets, they exhibit significant thermal magnetic instability, known as flux jump. This characteristic will generate
random voltage spikes during the excitation process of the magnet, leading to misjudgment by the Quench Detection System (QDS)

* To solve this problem, this study uses machine learning algorithms and aims to build a simplified and efficient recognition model to effectively distinguish the
phenomenon of overshoot and flux jump during the excitation process of Nb3Sn magnets.

Methods and Results
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Figl: Comparison between Flux Jump and Quench

« 25 signals, 27 Quench signals

« Use the six-pole bridge voltage data

 Each data segment lasts for 150ms,
with a sampling interval of 0.2ms and a
sampling frequency of 5000Hz
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Step2: Feature extraction
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* In this study, the 0-2500hz (single-sided frequency band) is divided into six frequency bands (1-100)Hz, (100-300)Hz, (300-600)Hz, (600-1000)Hz, (1000-

1500)Hz, and (1500-2500)Hz, and four frequency domain features are extracted in each frequency band.
« The study found that this voltage signal is a non-stationary random signal, so its Freqguency-domain feature need to be estimated using power spectrum
k estimation methods. Here, the Welch method is used, with a blackman window function as the window function.
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Tab1l:The selected feature and its number, name
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Step 3: Construct the feature matrix
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Model kernel function

Accuracy

Linear

100%

Quadratic

100%

SVM
Cubic

100%

Medium Gaussian

98.1%

Fine

96.2%

Medium

88.5%

KNN
Cosine

86.5%

Weighted

92.3%

Complex Tree

73.1%

Logistic Regression

80.8%

on various classifiers

« Given the strong correlation between standard deviation and Activity, only the Activity is retained.
« Setthe FJ signal label to 1; set the quench signal label to O;

« The resulting feature matrix is 52*34, where rows are samples (rows 1-25 are FJ, rows 26-52 are quench), and
columns are features (columns 1-24 are frequency domain features, columns 25-28 are time domain features,

columns 29-33 are waveform features, and column 34 is a label).
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Tab2:Accuracy of the original feature matrix

Step 4: Use classifier to classify

Model number 1.1 Model 1.1
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Status: Trained
ccuracy: 100.0%

Prediction speed: ~310 obs/sec
raining Time: 10.23130 ° “

lassifier
Preset: Linear 3VM
Kernel function: Linear
Kernel scale: Automatic
Box constraint level: 1
Multiclass method: One-ws-One
Standardize data: true

Feature Selection
[l features used in the model, before PCA

In this study, we used 10-folds cross-validation.
Using SVM and the simplest linear kernel
function, we can achieve 100% classification
accuracy. The basic information of its model,
confusion matrix, and ROC curve are shown In
the figure above
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Fig2 : Flowchart of feature selection algorithm
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Step 5: Construct the most concise and effective feature combination

Number of feature | _________Name ________

21 1500-2500Hz Absolute power
31 Complexity

20 1000-1500Hz Center frequency
30 Mobility

5 100-300Hz Absolute power

Tab3:The optimal feature combination selected by the feature selection

algorithm

Model kernel function

Accuracy

Linear

100%

Quadratic

98.1%

SVM
Cubic

98.1%

Medium Gaussian

100%

Fine

98.1%

Medium

98.1%

KNN
Cosine

98.1%

Weighted

100%

Simple, medium, complex Tree

92.3%

Logistic Regression

100%

Tab4 : Accuracy of optimal feature combination on various classifiers

Status: Trained

Accuracy: 100.0%
Prediction speed: ~3100 obs/sec
Training Time: 1.2731%)

Classifier

Preset: Linear SVM

Kernel function:

Kernel scale; Automatic

Model number 36

Linear

Box constraint level: 1
Multiclass method: One-vs-One
Standardize data: true

Feature Selection
Used features, before PCA: column_5, column_20, column_21, column_30, column_31

Number  feature selection Feature combination Classifier Accuracy
algorithm
1 1-33 100%
2 my 5,20,21,30,31 linearSVM 100%
3 mRMR 20,21,23,31,33 96%
10-folds cross
4 Mullnf 8,21,23,31,32 validation 96%
5 relief 5,8,21,23,31 94.2%
6 PCA 82.7%

Tab5 : Classification results of feature combinations obtained using
different feature selection algorithms on the classifier

Using the author's original feature selection
algorithm (shown in Fig. 2), five optimal
feature combinations were selected from 33
features (shown in Tab. 3), achieving a 100%
classification accuracy on SVM (Linear).
Then, the accuracy of the combination on
different classifiers was compared (shown in
Tab.4), verifying the excellent universality of
these features.

Furthermore, a comparison was made
between common feature selection algorithms
and the feature combinations selected by the
author's feature selection algorithm, verifying
the superior performance of the author's
feature selection algorithm.
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Conclusions

In this study, 27 quench samples and 25 flux jump samples were used, and 33 features were extracted from each sample. Multiple machine learning algorithms were used to train and build
models on these data, and the accuracy of different algorithms was compared to explore the best recognition model. The experimental results showed that the model achieved a 100%
classification accuracy on the linear kernel SVM using only 5 features. Using this machine learning model, high accuracy and computational speed were achieved in the identification of quench
and flux jump, which can provide a reference for the optimization of subsequent FECR quench detection algorithms.
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