With Cheetah and curriculum learning, a
reinforcement learning (RL) agent can learn to tune
14 quadrupoles for FEL intensity. Gradient-based

RL enables 45x more sample-efficient training.
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e The FEL has to switch between energies and phase space shapes frequently, L R
where the pulse intensity has to be optimised for each of these. ; — e P s
o Autonomous online tuning of the pulse intensity can facilitate faster fine 5T C//JA// i
tuning and switching of working points, ultimately increasing available . : ]
experiment time and improving repeatability. Ea _
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. S’;arting point that can eventually be extended to 30+ quadrupoles, undulator taper, 3 2 | :
phase shifters and more actuators. : — Oradient-free 1
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Gradient-free Reinforcement Learning-trained Optimisation (RLO)

e The relatively high dimensionality of the action space makes the task hard to .
solve. This is further amplified by the fact that the actuator space that leads to Gradient-based RL rollout graph
lasing is very narrow, resulting in sparse rewards. Solving this problem
therefore requires a very large number of environment interactions.

e Existing simulations in Bmad etc. are too slow to collect the required number Randomly sampled
: . . magnet init and Twiss
of samples in feasible time.

e We take various steps to improve sample efficiency and reduce the time it
takes to collect each sample:

e The Cheetah simulation code is purpose-built for fast sample collection in
reinforcement learning and runs multiple orders of magnitude faster. This can be i I K ... =5m
augmented with neural network surrogate models trained on real-world data. e — Pl 3 = ——>

e Curriculum learning by increasing the domain randomisation ranges around the
design values allows us to overcome the sparse reward setting.

e Successful training with Proximal Policy Optimisation (PPO) from Stable
Baselines3 takes 50 million samples and 1 day 16 hours of a HPC node.
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Gradient-based Approach Using Cheetah

e Cheetah natively supports automatic differentiation, meaning we can do
gradient-based reinforcement learning using the true policy gradient.

e Implementation of gradient-based policy optimisation using Cheetah and
PyTorch Lightning reaches the same reward threshold in 45x fewer samples.

Outlook

e Analyse agreement of Cheetah model to neural network surrogates trained on
real-world data to facilitate zero-shot transfer to real machine or curriculum
learning on different backends (Cheetah to NN surrogate to real machine).

e Compare RLO to Bayesian optimisation with neural network priors on the
same task.
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