Reshaping SRF Cavity Resonance Management with Smart Techniques

Faya Wang

Mar 7, 2024

4th ICFA Beam Dynamics Workshop On Machine Learning Applications for Particle Accelerators, South Korea

SRF Cavity DMD Test Results

DMD: Dynamic Mode Decomposition

 $\frac{d}{dt}\mathbf{x}(t) = F(\mathbf{x}(t)) \qquad \mathbf{x}_{k+1} = F(\mathbf{x}_k) \qquad F \approx f \text{ based on data}$

 $x_k = [a_k \ b_k]^T$: system status and actuator inputs

Linear system: $x_{k+1} = Wx_k$

Mapping nonlinear problem in large state dimension with kernel function

$$f \approx \sum_{j=1}^{N} \xi_j \phi_j(x) = \Xi \phi(x) = W k(X, x)$$

- φ: the feature library of N candidate term
 that may describe the dynamics
- E: the coefficients that determine which feature terms are active and what proportions.
- k: kernel function

• Data matrices:
$$X = [x_1 x_2 \dots x_m]$$

SRF Cavity DMD Test Results

Active Resonance Controller

- Simulation with 32 mechanical modes
- Cavity half bandwidth: 16.25 Hz
- Detune std: ~ 1 Hz

