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Abstract (20' incl. Q&A)

2

Detailed modeling of particle accelerators can benefit from parallelization on modern compute hardware 
such as GPUs and can often be distributed to large supercomputers. Providing production-quality 
implementations, the Beam, Plasma & Accelerator Simulation Toolkit (BLAST) provides multiple modern 
codes to cover the widely different time and length scales between conventional accelerator elements and 
advanced, plasma-based elements. The Exascale code WarpX provides electromagnetic and -static, 
t-based particle-in-cell routines, advanced algorithms and is highly scalable. For beam-dynamics, the 
s-based ImpactX code provides an efficient implementation for tracking relative to a nominal reference 
trajectory, including space charge. Integrated modeling of "hybrid" beamlines – integrating both detailed 
plasma models and large-scale transport at full detail – requires exchange between codes and is limited by 
the computational speed of the most-detailed element, usually the plasma element.

In this work, we present an alternative approach to coupling particle-in-cell models and codes beyond direct 
data exchange or reduced details for accelerator modeling. In particular, we investigate and demonstrate 
detailed data-driven modeling based on high-quality WarpX simulations that were used to train surrogate 
models for the beam transport code ImpactX. We describe new workflows, illuminate predictive quality, 
performance and applicability to central research topics in advanced accelerator research, such as staging 
of laser-wakefield accelerators.



Outline

GPU-Accelerated Particle-in-Cell Modeling at Exascale
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BLAST Codes for Exascale
Our Background: WarpX and ImpactX

GPU-accelerated ML surrogates
Approach: establishing rapid, fully accelerated, "in-the-loop" ML

Staging of LWFA for future HEP colliders
Demo: Hybrid beamlines - plasma-transport modeling



BLAST Codes for Exascale
WarpX and ImpactX



First Principle Particle-in-Cell Modeling of Particle Accelerators
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Involves the modeling of the intricate interactions of
● relativistic particles: beams, plasmas, halo, stray electrons
● EM fields: accelerating/focusing fields, beam self-fields, laser/plasma fields
● structures: metals, dielectrics.

Typical computer representations:
● particles: macro particles representing each 1-106 particles
● fields: electromagnetic, on a grid
● structures: surfaces interacting with grid and macroparticles

Many space- and time scales to cover:
● from μm (e.g., plasma structures, e--surface interactions) to km (e.g., LHC)
● from ns (beam passing one element) to seconds or more (beam lifetime)
⇒ needs best algorithms on largest & fastest computers

electromagnetic (EM) 
fields on a grid

Macroparticles Surfaces

CERN (HL-)LHC FNAL PIP(-II/III) LBNL BELLALBNL ALS(-U)



Power-Limits Seeded a Cambrian Explosion of Compute Architectures
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AMD

GPUs

ARM

CPUsCPUs

Top 500

Frontier (USA): 1.2 EFlops 
• AMD GPUs

Fugaku (Japan): 0.44 EFlops 
• Fujitsu ARM CPUs

Lumi (Finland): 0.3 EFlops 
• AMD GPUs

Leonardo (Italy): 0.24 EFlops 
• Nvidia GPUs

Summit (USA): 0.15 EFlops 
• Nvidia GPUs

Upcoming     (under acceptance testing)

Aurora (USA):  ~2 EFlops 
• Intel GPUs



Beam, Plasma and Accelerator Simulation Toolkit (BLAST) at Exascale
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Imagine a future, hybrid particle accelerator, e.g., with conventional and plasma elements.

s-based PIC
uses s instead of t as
independent variable
+ symplectic maps for 
accelerator elements

Quasistatic PIC
separates timescale:
plasma wake & beam evl.

BoosterSource Injector

Storage Ring

FEL

modeling of radiative & 
space-charge effects

buildup of electron clouds, 
secondary electron yield

Injector

Storage RingIP IP

Goal
Start-to-end model-
ing in an open 
software ecosystem.

Plasma Stage(S)RF Gun LPA/LPI

cooling

Plasma Stage

t-based electromagnetic 
or -static PIC

WarpX

HiPACE++

ImpactX

BLAST:
any CPU/GPU

Beam
Beam

3D

ES or
Vlasov

IMPACT-T

Legend

in BLAST

LW3D

POSINST

other

IMPACT-Z

Warp

FBPIC

Wake-T
Reduce Dynamics / 
Geometry

A Huebl et al., AAC’22, in print, 2023. arXiv:2303.12873
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We Develop Openly with the Community

python3 -m pip install .
brew tap ecp-warpx/warpx
brew install warpx

spack install warpx
spack install py-warpx

conda install
        -c conda-forge warpx

module load warpx
module load py-warpx

cmake -S . -B build
cmake --build build --target 
install

Open-Source Development & Benchmarks:
github.com/ECP-WarpX

Online Documentation:
warpx|hipace|impactx.readthedocs.io

Rapid and easy installation on any platform:

230 physics benchmarks run on every code change of WarpX
34 physics benchmarks for ImpactX
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BLAST Codes: Easy to Use, Extent, Tested and Documented

LDRD github.com/ECP-WarpX/impactx

Example: ImpactX FODO Cell Lattice

💡 Same Script
  CPU/GPU & multi-node



Toward an integrated ecosystem of codes with on-the-fly tunability
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1D-1V 3D-3V

Low 
resolution

High 
resolution

Reduced 
models

First 
principles

Speed Fidelity
Reduced 
physics

Full 
physicsFast 

&

 as

accurate

as

possible

Accurate 

&

 as

fast

as

possible

Rapid optimization with multi-fidelity models:
Talk seen on Wed by Remi Lehe (LBNL)

Ecosystem of codes
🡺 share models & data between codes
🡺 works best when standardized

e.g., optimization & operations e.g., exploration, training data



We Standardize - Let's Work Together

GPU-Accelerated Particle-in-Cell Modeling at Exascale
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Particle-In-Cell
Modeling Interface

open Particle Mesh 
Data standard

Code A

Code B

...

Simulation code

Facilitates:
● Chaining of codes for multiphysics workflow.
● Cross-benchmarking, verification, comparison.
● Interfacing with ensemble optimization, AI/ML software.
● Integration into frameworks.

A Huebl et al., DOI:10.5281/zenodo.591699 (2015)
DP Grote et al., Particle-In-Cell Modeling Interface (PICMI) (2021)
LD Amorim et al., GPos (2021);  M Thévenet et al., DOI:10.5281/zenodo.8277220 (2023)
A Ferran Pousa et al., DOI:10.5281/zenodo.7989119 (2023)
RT Sandberg et al., IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)

as of 03/2024: 37+ projects

https://doi.org/10.5281/zenodo.591699
https://doi.org/10.5281/zenodo.8277220
https://doi.org/10.5281/zenodo.7989119
https://doi.org/10.18429/JACoW-IPAC-23-WEPA101


GPU-accelerated ML surrogates
establishing rapid, fully accelerated, "in-the-loop" ML



Augmenting & GPU-accelerating PIC Simulations & ML Models

fields &      particles

tensors        arrays

Compatible ecosystem between:

Persistent GPU data placement
● read+write access, no CPU transfer

Cross-Ecosystem, In Situ Coupling:
Consortium for Python Data API 
Standards data-apis.org

GPU Workflows are blazingly fast
● PIC simulations
● Machine learning

Can we augment & accelerate on-GPU
PIC simulations with on-GPU ML models?



Use-Cases of these Python Bindings

Designed with two fundamental workflows in mind:

expand BLAST codes
from Python
● optimization workflows
● numerical prototyping
● modular code coupling
● in situ analysis
● interactive steering
● …
● data-science and AI/ML

○ incl. AI in the loop

write your own 
benchmarks, tests
● interactive tutorials
● education
● app prototyping
● testing
● …
● Python purists ;-)



Modular Software Architecture
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WarpX
full PIC, 
LPA/LPI

AMReX

Containers, Communication,
Portability, Utilities

MPICUDA, OpenMP, SYCL, HIP

openPMD
diagnostics

Python: Modules, PICMI interface, Workflows

PICSAR
QED Modules

Math

FFTs,
lin. alg.

ABLASTR: shared PIC

ARTEMIS
microelectronics

ImpactX
accelerator lattice design

Desktop
to

HPC

HiPACE++
quasi-static, 

PWFA

pyAMReX

ML 
Frameworks

PyTorch, 
Tensorflow, …

…



Staging of LWFA for
future HEP colliders

Hybrid beamlines: plasma-transport modeling



Laser-Wakefield Acceleration

𝝉=30fs 

Petawatt
laser pulse

LPA 100 000 MV / m
RF  <200 MV / m

17

AJ Gonsalves et al., "Petawatt Laser Guiding and Electron Beam 
Acceleration to 8 GeV in a Laser-Heated Capillary Discharge 
Waveguide", Phys. Rev. Lett. 122, 084801 (2019)



Future Collider Concept: Staging of LWFAs
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first 3D simulation of a chain of 50 plasma accelerator stages 
for future colliders

50

simulated transverse
electric field

WarpX on Frontier:
Ascent & VTK-m

on 552 GPUs/GCDs

J-L Vay, A Huebl et al., PoP 28.2, 023105 (2021);  N Marsaglia, et al., DOI:10.5281/zenodo.8226853 (2023)
J-L Vay et al., ECP WarpX MS FY23.1;  A Ferran Pousa et al., IPAC23, DOI:10.18429/JACoW-IPAC2023-TUPA093 (2023)

https://docs.google.com/file/d/1awuiNzuhNntLGC9pTtT66G6K3ubH4v8l/preview


Modeling Hybrid, Conventional + Plasma Beamlines
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RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)
RT Sandberg et al. and A Huebl, PASC24 accepted (2024)

Lens LWFA 
Stage 2 Drift …LWFA

Stage 1 Drift Drift
few pC

e- beam

Simulation time: full geometry, full physics
   hrs                     <sec

       256 GPUs          1 GPU

Lens LWFA 
Stage 2 Drift …LWFA

Stage 1 Drift Drift
few pC

e- beam

ML boosted: for a specific problem

ML                              tracking                             ML               tracking

● start-to-end collider modeling
● digital twin / ‘real-time’

Model Speed: for accelerator elements

        WarpX                   WarpX / ImpactX                   WarpX           ImpactX

Fast surrogates: Data-driven modeling is
a potential middle ground between
● analytical modeling and
● full-fidelity simulations.

Model Choice: for complex, nonlinear, 
many-body systems pick two of the following

level of detail

speed

accuracy simulation

data-drivenan
aly

tic
al



We Trained a Neural Net with WarpX for Staging of Electrons
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one-time cost: few hr WarpX sim + 10min training

Lens LWFA 
Stage 2 Drift …LWFA

Stage 1 Drift Drift
few pC

e- beam

Hyperparameters
● 6D in 6D out
● 3-5 hidden layers with 700-900 nodes each are sufficient

A Neural Net is 
a non-linear

transfer map!

Assumption: 
purely tracking

A single WarpX 
simulation can 
be used to train 
multiple stages 
(7,14,21,…GeV).

RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)
RT Sandberg et al. and A Huebl, PASC24 accepted (2024)

Training data: 1M particles / beam
Training time: 2-2.2 hrs on 1 GPU

trained

reference



Modeling + Inference are Fully GPU Accelerated
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ImpactX: 10 GPU sec
after 15 surrogates

WarpX: 1,316 GPU hrs
15 stage simulation

 

one-time cost: few hr WarpX sim + 10min training

Lens LWFA 
Stage 2 Drift …LWFA

Stage 1 Drift Drift ImpactX tracking 10M particles: 10s on 1 GPU
Inference time: 63ns / particle / stagefew pC

e- beam

RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)
RT Sandberg et al. and A Huebl, accepted to PASC24, arXiv:2402.17248 (2024)

1st & 2nd order
beam moments
~0.1-1%-lvl error



Modeling + Inference are Fully GPU Accelerated
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one-time cost: few hr WarpX sim + 10min training

Lens LWFA 
Stage 2 Drift …LWFA

Stage 1 Drift Drift
few pC

e- beam

RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)
RT Sandberg et al. and A Huebl, accepted to PASC24, arXiv:2402.17248 (2024)

Rapid Start-to-End Optimization for Transport Design

Crucial, Open Challenges
● microscopic and collective

effects together: space charge
● better conserve beam moments

feedback & collabs
wanted

ImpactX tracking 10M particles: 10s on 1 GPU
Inference time: 63ns / particle / stage



Summary

▪ BLAST is a modular, fully open suite of Exascale PIC codes for
beam, laser-plasma & accelerator modeling.

▪ WarpX for time-based integration, e.g., injectors, LWFAs
▪ ImpactX for s-based beam dynamics, e.g., linacs, rings, start2end

▪ Vibrant Ecosystem and Contributions
▪ Runs on any platform: Linux, macOS, Windows - Laptop to HPC
▪ Public development, automated testing, review & documentation
▪ Friendly, open & helpful community

github.com/ECP-WarpX
github.com/openPMD
github.com/AMReX-Codes
github.com/picmi-standard

level of detail

speed

accuracy
simulation

data-drivenan
aly

tic
al

▪ Seamless, GPU-Accelerated Coupling of AMReX/BLAST & ML Frameworks
▪ zero-copy GPU data access: in situ ML elements
▪ Scripted: easy to vary & research new data models bring your own 

lattice & ML model!
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Ad Hoc Uncertainty Quantification Attempt: Testing the Network

Error of Beam Moments
combined beamline stage 1 stage 2

Training data: 50,000 particles / beam

9 stage simulation (pre-review) for:
RT Sandberg et al. and A Huebl, accepted to PASC24, arXiv:2402.17248 (2024)
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WarpX is a GPU-Accelerated PIC Code for Exascale

Multiple Particle-in-Cell Loops
● electromagnetic or -static (time integration)

Push particles

Deposit 
currents

Solve fields

Gather fields

 

 

 

 

Geometries
• 1D3V, 2D3V,

3D3V and
RZ (quasi-
cylindrical)

Advanced algorithms
boosted frame, spectral solvers, Galilean 
frame, embedded boundaries + CAD, MR, ...

Multi-Physics Modules
field ionization of atomic levels, Coulomb
collisions, QED processes (e.g. pair creation), 
macroscopic materials, secondary emission

Multi-Node parallelization
• MPI: 3D domain decomposition
• dynamic load balancing

On-Node Parallelization
• GPU: CUDA, HIP and SYCL
• CPU: OpenMP

Scalable & Standardized
• PICMI input
• openPMD (HDF5 or ADIOS)
• in situ: diagnostics & Python APIs



ImpactX: GPU-, AMR- & AI/ML-Accelerated Beam Dynamics

Particle-in-Cell Loop
● electrostatic

○ with space-charge effects
● s-based

○ relative to a reference particle
○ elements: symplectic maps

Fireproof Numerics
based on IMPACT suite of codes, esp. 
IMPACT-Z and MaryLie

Triple Acceleration Approach
• GPU support
• Adaptive Mesh Refinement
• AI/ML & Data Driven Models

LDRD

User-Friendly
• single-source C++, full Python control
• fully tested
• fully documented

Multi-Node parallelization
• MPI: domain decomposition
• dynamic load balancing (in dev.)

On-Node Parallelization
• GPU: CUDA, HIP and SYCL
• CPU: OpenMP

Scalable & Standardized
• openPMD (HDF5 or ADIOS)
• in situ: diagnostics & Python APIs



Active Standardization Efforts

GPU-Accelerated Particle-in-Cell Modeling at Exascale
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Code A

Code B

...

Particle-In-Cell
Modeling Interface

open Particle Mesh
Data standard

Standardization…
● Inputs
● Data
● Reference

Implementations

strong int. partnerships

A Huebl et al., DOI:10.5281/zenodo.591699 (2015)
DP Grote et al., Particle-In-Cell Modeling Interface (PICMI) (2021)

LD Amorim et al., GPos (2021);  M Thévenet et al., DOI:10.5281/zenodo.8277220 (2023)
A Ferran Pousa et al., DOI:10.5281/zenodo.7989119 (2023)

RT Sandberg et al., IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)

… Accelerates Innovation
●

github.com/LASY-org
●

github.com/optimas-org
● BLAST + Geant4

github.com/LDAmorim/GPos
● easy ML training

https://doi.org/10.5281/zenodo.591699
https://doi.org/10.5281/zenodo.8277220
https://doi.org/10.5281/zenodo.7989119
https://doi.org/10.18429/JACoW-IPAC-23-WEPA101
https://github.com/LASY-org/lasy/
https://github.com/optimas-org/optimas
https://github.com/LDAmorim/GPos


ML Surrogates: A Sensible Target for T/PBytes of Data
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Bridging model time scales with data-driven methods.

A Huebl et al., NAPAC22, DOI:10.18429/JACoW-NAPAC2022-TUYE2 (2022)
RT Sandberg et al and A Huebl, IPAC23, DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023)

A Huebl et al., AAC22, arXiv:2303.12873 (2023);  RT Sandberg et al. and A Huebl, accepted, PASC24 (2024)

Things that run very fast on GPU:
● our PIC simulations
● machine learning

Can we augment & accelerate on-GPU
PIC simulations with on-GPU ML models?

A) Training (slow)
● Offline: WarpX                → Neural Network
● Online (in situ): advanced ML methods

B) Inference: in situ to codes (fast)
● Zero-copy data access: persistently on GPU
● Example: an ML map in beam dynamics

Trans-
port

Plasma 
Stage

Plasma 
Stage

Plasma 
Source Injector

Model Speed: for accelerator elements

WarpX       ImpactX     WarpX       HiPACE++   WarpX-ES

ML boosted: for a specific problem

  ML           ImpactX          ML              ML              ML

● start-to-end collider modeling
● digital twin / ‘real-time’

Trans-
port

LWFA 
Stage

PWFA 
Stage

LWFA 
w/ iinj.

Kicker 
Magnet

Simulation time: full geometry, full physics
 hrs       sec  hrs        hrs  min

https://doi.org/10.18429/JACoW-NAPAC2022-TUYE2
https://arxiv.org/abs/2303.12873


WarpX Scales to the World's Largest HPCs

from a full stage simulation

Figure-of-Merit: weighted updates / sec

11
0x

50
0x

April-July 2022: WarpX on world’s largest HPCs
L. Fedeli, A. Huebl et al., Gordon Bell Prize Winner at SC’22, 2022

Note: Perlmutter & Frontier were pre-acceptance measurements!

68,608 GPUs of 
First Exascale

Machine

7,299,072
CPU Cores
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libEnsemble: Design Optimization I

J.-L. Vay et al., ECP WarpX MS FY23.1;  A. Ferran Pousa et al., IPAC23, DOI:10.18429/JACoW-IPAC2023-TUPA093 (2023)

3. converge
    3D

1. optimize
low-D, redu.

Staged LPA
Beam 

Emittance 
Preservation

2. inform
  3D

33

4. optimize

Wake-T, libEnsemble
WarpX



GPU Performance In Practice: Highly Asynchronous

Nvidia Nsight Systems trace files of ImpactX under DOI:10.5281/zenodo.10723742 

https://doi.org/10.5281/zenodo.10723742

