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NSLS-II Accelerator Overview
STORAGE RING PARAMETERS 

Ring circumference 792 m (.5 mile)
Ring Energy 3 Gev
Ring Current 500 mA

# Cells 30
Cell design type Double-Bend Achromat

Vertical emittance .008 nm-rad
Horizontal emittance .55 nm-rad

Time between bunches 2 ns
Revolution period 2.64 us
RF frequency 500 mHz

#RF Buckets 1320
# Bunches 1056

Active beamlines 31
• Complex scattering 5
• Hard X-ray scattering & spectroscopy 6
• Soft X-Ray scattering & spectroscopy 12
• Structural biology 5
• Imaging & Microscopy 6
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• Accelerator Reliability goal defined by DOE as 90%

• NSLS-II Internal goal of 95%

• NSLS2 regularly runs between 95-97% reliability

…but 5% of 4800 hrs is still 240 hrs of downtime

• Even in a reliable machine, downtime is a tangible 
burden on users.

Accelerator Reliability

Where can we reasonably gain in reliability?:

• Fast Faults -
 Power dips, power supply trips, network 

outages, vacuum spikes, RF trips, cryo 
quenches, etc.

 Not especially predictable – actionable by 
system improvement, or reducing trip-
recovery

• Slow Faults
 Temperature, pressure, flow rate, ground 

current, etc.
 Trip usually initiated by Equipment Protection 

systems
 Actionable when caught early enough

How early?

One 2-day maintenance & one 1-day interlocks period w weekend 
studies, repeating every 3 weeks.

10 days minimum, 20 days preferred

Reliability is % uptime when in Scheduled Ops.
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Issue Summary: local clogs in magnet cooling-water system sporadically cause heating issues with magnets. Seen most in 
QM magnets.  

 Normal temps ~35C; Klixons will dump beam between 70-80C unless overridden; Experts will abort at 80C. 

 Overheating can cause permanent damage to magnets –
leading long & costly replacement.

 Not the first time we’ve dealt with this issue

Magnet Temps & Cooling water system

# of magnet cooling-water flushes, 3-month bins Thermal camera image of a hot magnet.
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Plot of quadrupole magnet temperatures in several ‘bad’ spots around the 
ring; rising over 10 days in January 2024.

Summary-alarm values of Magnet RTD temperatures. Alarms 
sound in the accelerator Control Room, email experts, etc.

Monitors:
1. Plots (visual inspection)
2. Alarms
3. Calculating change over time (drift)
4. Programmatic prediction…

Drift monitor shows difference between reference temp & current 
temp – colors indicate size of delta

1

2

3

Magnet Temps: the run-up to Predictive Programs



Machine Learning Operations
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Development Philosophy

The name MLOps incorporates machine learning (ML), software 
development (DEV) and operations (OPS). 

Machine Learning Operation is designed to incorporate machine 
learning engineering and DevOps to seek for data governance 
and deployment in production with reliability and scalability. 

Slide content provided by Feng Bai
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Data Structure for QM magnets

Data for all QM magnets around 
the ring handled in 4 layers:

1. Temperature data as a list of HDF5 
files

2. 30 Cells in NSLS-II storage ring. 

3. 4 sensors/magnet * 4-5 QM/cell =
20-24 PVs per cell 

4. Temp data time series (288
meas/day @ 5 minute sampling 
rate) for each sensor

Slide content provided by Feng Bai



Data Engineering and Storage Systems

10

Data Engineering includes:

1.) Data acquisition based on the 
network paths from online sensors. 

2.) Raw data written into HDF5 files.

3.) Data transfer by reorganizing the raw 
data into self-structured data in .py files 
(we reorganize the sensor data into 5 
minutes per point in time series)

Data Structure for QM magnets

Q: What to do about asynchronous triggered data?

A: data sampled from archiver at fixed interval 
(5 min by default)

Slide content provided by Feng Bai



Machine Learning Systems (ML systems)
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The input temperature data is retrieved from the archiver 
appliance, organized, processed, and the outputs are written 
to files and PVs. 

There are three components in the ML systems that are 
parallelized: 
(1) Data Cleaning
(2) Model/Learning 
(3) Prediction

Data Structure for QM magnets

Slide content provided by Feng Bai
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Outliers

Temperature

Time

Sensor 
Resolution

Temperature

Time

𝜀

Outlier Detection (Linear regression case) Sensor resolution (Linear regression case)

regression model without outliers.
regression model including outliers.

regression model accounting for sensor resolution.
regression model without considering sensor resolution.

Data Structure

Filtering out outliers from sensor faults using 
isolation forest algorithm (over Euclid norms)

Adjusting sensitivity to account for jitter “created by” 
sensor resolution 
(0.125 C for our 1-wire sensors)

1. Data Cleaning

Slide content provided by Feng Bai
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We use time-series data per PV make temperature prediction 
in the pipelines. We tried several regression methods and 
deep learning methods for online predictions.

1.) Linear Regression;

2.) Quadratic Regression;

3.) Nonlinear Exponential Regression;

4.) LSTM.

Methods

2. Modeling & Regression 3. Prediction

Predictions/Parameters

ALL models:
• Days to 40 C
• T 3 days
• T 7 days
• T 14 days
• T 30 days
Linear Fit:
• Slope
• Least sq error
Quadratic Fit:
• Square coeff
• Linear coeff
• Least sq error
LSTM:
• <shape parameters>
• <error parameter(s)>

The newly trained ML models are used to model future behavior and 
predict temperatures at points in future.

Slide content provided by Feng Bai
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(Tested but Unused Prediction Models) 
Piecewise Linear Model Overlap Piecewise Linear Model

Linear Models, Lasso/ Ridge

Dataset of temperature for every day:

𝐷 ≔  𝑡1, 𝑇1 , … , 𝑡𝑁, 𝑇𝑁

𝑁 = 12 ∗ 24 = 288

D: daily dataset;
N: # of daily data inputs (5 mins); 
n: number of days;

The regression done every day with N 
data inputs; 

The piecewise linear models can capture 
the daily parameter 𝜃n (slopes)

Dataset of temperature for every day:

𝐷 ≔  𝑡1, 𝑇1 , … , 𝑡𝑁, 𝑇𝑁

𝑁 = 12 ∗ 24 = 288

D: daily dataset;
N: # of daily data inputs (5 mins); 
n: number of days;

The regression done every 12hs with N 
data inputs (including the dash lines); 

The piecewise linear models can capture 
the daily parameter 𝜃2𝑛 − 1 (slopes)

1. Lasso

2. Ridge

min
∈𝕽

𝑇 − 𝑋𝜃 +λ 𝜃 1

min
∈𝕽

𝑇 − 𝑋𝜃 +λ 𝜃 2

Strong Regularization

L1 Norm

Smooth Regularization

L2 Norm

Strong Regularization can feature the small parameters with the L1 norm distance to 0. However, Smooth Regularization just feature the characteristics of parameters gradually.
X: data inputs (daily time series temps), 𝜃: output parameter 

Slide content provided by Feng Bai



Machine Learning Methods: LSTM
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The data structures in the LSTM are shown in distributed pipelines per 
PV, per cell. 
The data in the training are displayed in tensor networks with the given 
period to form  the “time window”.

(Tested but Unused Prediction Models) 

Slide content provided by Feng Bai
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Results of Fitting

Slide content provided by Feng Bai

• Shown: results of Linear/least-squares and Lasso models over a 10-day span.
• In production: training and prediction periods are independent.

• Better predictions with longer fitting dataset, EXCEPT:

• Not able to deal with abnormalities in training set
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Using linear fit prediction right now.
Still testing learning-model fitting and prediction.

Predictions/Parameters

Both models:
• Days to 40 C
• T in 3 days
• T in 7 days
• T in 14 days
• T in 30 days
Linear Fit:
• Slope
• Least sq error
LSTM:
• <shape parameters>
• <error parameter(s)> 

Predictions & Displays
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5 C

5 C

Use by Experts

Presently, EE & Mechanical groups are watching hot magnets. 

Slope, temp predictions, and ‘time to threshold’ PVs are directing and replacing the same calculations being 
done by hand or in Excel, with much less time committed. 



Strengths and limitations
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+ 
 Slope is a VERY helpful early warning.
 Linear prediction catches magnets warming 

from ‘normal baseline’.
 Changing time windows & thresholds can help 

adapt to situations.
 Python; able to add features

-
 Fitting models deal poorly with fast changes 

(repairs, clogs);
 Even with perfect modeling, ‘sudden temp 

jumps’ in modeling time-window will result in 
bad predictions

 LSTM learning model needs more data (both 
length & type) to be worth using

Next Steps
 Expand ML model to use years of history, & other magnet/water readbacks
 Decide if all QM temp datasets can be treated (& trained) interchangeably
 Consider multivariable Transformer vs LSTM
 Can we make a model to deal with sudden temp rise/drop separately?

Applied to QM Magnets
 Need to expand scope to make learning model worthwhile:

 If ML is wanted, train using GPU cluster (for parallel processing)
 Make the display easier for experts to use/scan:

Future  Systems
 Power supply ground currents
 Possible use in RF and/or Cryo

Next steps & Future applications

Conclusions & Next Steps
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