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The Taiwan Photon Source is designed as a 3 GeV synchrotron 
light source, encompassing a 518.4 m circumference. The lattice 
structure of the storage ring consists of 24 Double-Bend 
Achromat cells. The storage ring is equipped with 172 BPMs and 
72/96 correctors to do orbit correction and control in horizontal 
and vertical planes, respectively. The correction algorithm uses a 
measured orbit response matrix and singular value decomposition 
(SVD) algorithm at present. This traditional method is rooted in 
physics and well-established principles of beam dynamics in 
particle accelerators. In this study, we use neural network model 
to do orbit correction. The training data for the neural networks is 
generated by accelerator toolbox (AT).  
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1. Establish reference orbit (Target Orbit) 
2. Measure Orbit Response Matrix R between BPMs and correctors. 
3. Apply SVD to decompose R, and select the number of singular values  
4. Measure actual orbit - check for bad readings  
5. Compute difference orbit  
6. Compute corrector strength from   
 
7. Check for corrector currents in reasonable range  
8. Apply corrector currents  

Singular values 

It work with difference orbit and corrector changes rather than the absolute orbit and corrector 
values. 
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BPM Corrector Corrector BPM 

Orbit Correction by SVD (Traditional) 



Orbit Correction Scheme in TPS Storage Ring 



 Training: 
1. 72 horizontal correctors (HC) strengths within +/- 2.5 µrad are randomly  
    assigned and then get orbits (172 BPMs) by AT: repeat  3000 times. 
2. Build Model by keras: input layer is 172 nodes, hidden layer is 172 nodes, 
     output layer is 72 nodes. 
3. Train the model with AT simulation data. 
4. Save the well-trained model of the neural networks. 
 
 Test: 
5. Generate many orbit distortions by randomly shifting 249 quadrupoles 
    within +/- 3 µm in horizontal plane. 
6. Load the well-trained model of the neural networks 
7. Input the orbit distortions to the neural networks to get the predicted 
    corrector strength 
8. Use the predicted corrector strength to correct the orbit distortion 
    generated by quadrupole misalignment 
9. Iterate step 7 ∼ 8: 3 times 

Simulation of Orbit Correction by Neural Networks 



Training Neural Networks (NN) 
Output: 
72 Horizontal 
corrector  

Input: 
172 BPMs  



Simulation of Orbit Correction by Neural Networks 
In TPS Storage Ring 

Misalignment quantities of 249 quadrupole magnets within +/- 3 µm to generate orbit 
distortion in TPS storage ring simulated by AT. 



Simulation of Orbit Correction by Neural Networks 
In TPS Storage Ring 

Misalignment quantities of 249 quadrupole 
magnets within +/- 3 µm to generate orbit 
distortion in TPS storage ring simulated by 
AT. 

Orbit correction by neural network: Red is 
the orbit before correction (BC), green, 
magenta, and blue are the orbit after 
correction (AC), iterate 3 times (AC-1, AC-
2, AC-3). 



Demonstration 

Orbit Correction by Machine Learning 



APPENDIX 



115 m, 1.5 GeV 

30 HC (±200 to 300 mA), 54 BPM, 1500 data sets 
Initial Orbit 



History of Neural Networks 

RBM: Restricted Boltzmann Machine 
DBN: Deep Belief  Network 

Ref: Deep learning in optical metrology: a review, Chao Zuoet al. Light: Science & Applications (2022) 11:39  

CNN: Convolution Neural Network 
RNN: Recurrent Neural Network 



Ref: An Introductory Review of Deep Learning for Prediction Models With Big Data, 
Frontiers in Artificial Intelligence, 28 Feb. 2020 

Popular Deep Learning & Software 
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Training Data Predict y 

Is loss 
function  

minimum ?  

• Initialize weights "randomly" 
• For all training epochs 

• for all input-output in training set 
• using input and compute output : forward propagation 
• compare computed output with training output -> calculate loss function 
• update weights (backpropagation) to improve output -> minimize loss function 

• if accuracy is good enough, stop 

Training by Backpropagation 

Forward Propagation 

Back Propagation 
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/ 

Input Hidden Output 

How to determine weights and bias ? 
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▶ Software Packages: Keras, Tensorflow, Python. 
▶ Data collection: Scaling and normalizing data, then splitting data into training, 
    validation and test sets.  
▶ Build a neural network: Select an appropriate neural network architecture (e.g. 
   feedforward, recurrent, convolution, et al) based on problem type (e.g. regression, 
   classification, et al.), and assign the number of layers, neuron number in each  
   layer, activation function (e.g. sigmoid, tanh, ReLu, et al. ). 
▶ Compile the Model: Specify the loss function (e.g. mean square error, et al.),  
   optimizer (e.g. adam, sgd, et al.) that adjusts the model’s weights and bias. 
▶ Fit (Training) Model (minimize loss function): Specify the batch size, the  
    number of epochs (training iteration times), and using training set of data. 
▶ Evaluate Model: Evaluate the model’s performance by using validation data set. 
▶ Fine-Tuning Hyperparameter: Training model with different learning rate  
    (step size during training), batch size (number of data sets used in each iteration of 
    training, , number of layers, neurons per layer, Epoch (training times of passing 
    data sets through network model), to avoid underfitting and overfitting. 
▶ Make Predictions: Use the trained model to make prediction on test data. 

Workflow of Neural Networks 



import numpy as np 
from keras.models import Sequential 
from keras.layers.core import Dense 
 
# the four different states of the XOR gate 
training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32") 
 
# the four expected results in the same order 
target_data = np.array([[0],[1],[1],[0]], "float32") 
# Build a model 
model = Sequential() 
model.add(Dense(16, input_dim=2, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 
 
model.compile(loss='mean_squared_error', 
              optimizer='adam', 
              metrics=['binary_accuracy']) 
# start to train 
model.fit(x=training_data, y=target_data, nb_epoch=500, verbose=2) 
# Prediction 
print model.predict(training_data).round() 

Python Code by Keras for XOR 

https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html 

Dense: Fully connected 

https://keras.io/api/models/model_training_apis/ 

https://keras.io/api/metrics/ 

https://keras.io/api/optimizers/ 
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