
Study of Orbit Correction by Neural Networks
In Taiwan Photon Source

Mau-Sen Chiu

2024/03/07
Beam Dynamics Group, NSRRC

1

The Taiwan Photon Source is designed as a 3 GeV synchrotron
light source, encompassing a 518.4 m circumference. The lattice
structure of the storage ring consists of 24 Double-Bend
Achromat cells. The storage ring is equipped with 172 BPMs and
72/96 correctors to do orbit correction and control in horizontal
and vertical planes, respectively. The correction algorithm uses a
measured orbit response matrix and singular value decomposition
(SVD) algorithm at present. This traditional method is rooted in
physics and well-established principles of beam dynamics in
particle accelerators. In this study, we use neural network model
to do orbit correction. The training data for the neural networks is
generated by accelerator toolbox (AT).

Abstract

)|cos(|
sin2

πνφφ
πν

ββ
−−= ji

ji
ijR

1. Establish reference orbit (Target Orbit)
2. Measure Orbit Response Matrix R between BPMs and correctors.
3. Apply SVD to decompose R, and select the number of singular values
4. Measure actual orbit - check for bad readings
5. Compute difference orbit
6. Compute corrector strength from

7. Check for corrector currents in reasonable range
8. Apply corrector currents

Singular values

It work with difference orbit and corrector changes rather than the absolute orbit and corrector
values.

)()/1(XUwdiagV T
j ∆⋅⋅⋅−=∆θ
∆X: Difference Orbit

3

= −𝑉𝑉𝑊𝑊−1𝑈𝑈𝑇𝑇

BPM Corrector Corrector BPM

Orbit Correction by SVD (Traditional)

Orbit Correction Scheme in TPS Storage Ring

 Training:
1. 72 horizontal correctors (HC) strengths within +/- 2.5 µrad are randomly
 assigned and then get orbits (172 BPMs) by AT: repeat 3000 times.
2. Build Model by keras: input layer is 172 nodes, hidden layer is 172 nodes,
 output layer is 72 nodes.
3. Train the model with AT simulation data.
4. Save the well-trained model of the neural networks.

 Test:
5. Generate many orbit distortions by randomly shifting 249 quadrupoles
 within +/- 3 µm in horizontal plane.
6. Load the well-trained model of the neural networks
7. Input the orbit distortions to the neural networks to get the predicted
 corrector strength
8. Use the predicted corrector strength to correct the orbit distortion
 generated by quadrupole misalignment
9. Iterate step 7 ∼ 8: 3 times

Simulation of Orbit Correction by Neural Networks

Training Neural Networks (NN)
Output:
72 Horizontal
corrector

Input:
172 BPMs

Simulation of Orbit Correction by Neural Networks
In TPS Storage Ring

Misalignment quantities of 249 quadrupole magnets within +/- 3 µm to generate orbit
distortion in TPS storage ring simulated by AT.

Simulation of Orbit Correction by Neural Networks
In TPS Storage Ring

Misalignment quantities of 249 quadrupole
magnets within +/- 3 µm to generate orbit
distortion in TPS storage ring simulated by
AT.

Orbit correction by neural network: Red is
the orbit before correction (BC), green,
magenta, and blue are the orbit after
correction (AC), iterate 3 times (AC-1, AC-
2, AC-3).

Demonstration

Orbit Correction by Machine Learning

APPENDIX

115 m, 1.5 GeV

30 HC (±200 to 300 mA), 54 BPM, 1500 data sets
Initial Orbit

History of Neural Networks

RBM: Restricted Boltzmann Machine
DBN: Deep Belief Network

Ref: Deep learning in optical metrology: a review, Chao Zuoet al. Light: Science & Applications (2022) 11:39

CNN: Convolution Neural Network
RNN: Recurrent Neural Network

Ref: An Introductory Review of Deep Learning for Prediction Models With Big Data,
Frontiers in Artificial Intelligence, 28 Feb. 2020

Popular Deep Learning & Software

Input X

Update
 W and B

Target Y

Minimize loss function

Optimizer :

No Yes Well-trained
Model

� 𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑖𝑖 2
𝑛𝑛

𝑖𝑖=1

Training Data Predict y

Is loss
function

minimum ?

• Initialize weights "randomly"
• For all training epochs

• for all input-output in training set
• using input and compute output : forward propagation
• compare computed output with training output -> calculate loss function
• update weights (backpropagation) to improve output -> minimize loss function

• if accuracy is good enough, stop

Training by Backpropagation

Forward Propagation

Back Propagation
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/

Input Hidden Output

How to determine weights and bias ?

https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/
https://www.analyticsvidhya.com/blog/2016/08/evolution-core-concepts-deep-learning-neural-networks/

▶ Software Packages: Keras, Tensorflow, Python.
▶ Data collection: Scaling and normalizing data, then splitting data into training,
 validation and test sets.
▶ Build a neural network: Select an appropriate neural network architecture (e.g.
 feedforward, recurrent, convolution, et al) based on problem type (e.g. regression,
 classification, et al.), and assign the number of layers, neuron number in each
 layer, activation function (e.g. sigmoid, tanh, ReLu, et al.).
▶ Compile the Model: Specify the loss function (e.g. mean square error, et al.),
 optimizer (e.g. adam, sgd, et al.) that adjusts the model’s weights and bias.
▶ Fit (Training) Model (minimize loss function): Specify the batch size, the
 number of epochs (training iteration times), and using training set of data.
▶ Evaluate Model: Evaluate the model’s performance by using validation data set.
▶ Fine-Tuning Hyperparameter: Training model with different learning rate
 (step size during training), batch size (number of data sets used in each iteration of
 training, , number of layers, neurons per layer, Epoch (training times of passing
 data sets through network model), to avoid underfitting and overfitting.
▶ Make Predictions: Use the trained model to make prediction on test data.

Workflow of Neural Networks

import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense

the four different states of the XOR gate
training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32")

the four expected results in the same order
target_data = np.array([[0],[1],[1],[0]], "float32")
Build a model
model = Sequential()
model.add(Dense(16, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='mean_squared_error',
 optimizer='adam',
 metrics=['binary_accuracy'])
start to train
model.fit(x=training_data, y=target_data, nb_epoch=500, verbose=2)
Prediction
print model.predict(training_data).round()

Python Code by Keras for XOR

https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html

Dense: Fully connected

https://keras.io/api/models/model_training_apis/

https://keras.io/api/metrics/

https://keras.io/api/optimizers/

https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://blog.thoughtram.io/machine-learning/2016/11/02/understanding-XOR-with-keras-and-tensorlow.html
https://keras.io/api/models/model_training_apis/
https://keras.io/api/metrics/
https://keras.io/api/optimizers/

	投影片編號 1
	投影片編號 2
	投影片編號 3
	投影片編號 4
	投影片編號 5
	投影片編號 6
	投影片編號 7
	投影片編號 8
	投影片編號 9
	投影片編號 10
	投影片編號 11
	投影片編號 12
	投影片編號 13
	投影片編號 14
	投影片編號 15
	投影片編號 16

