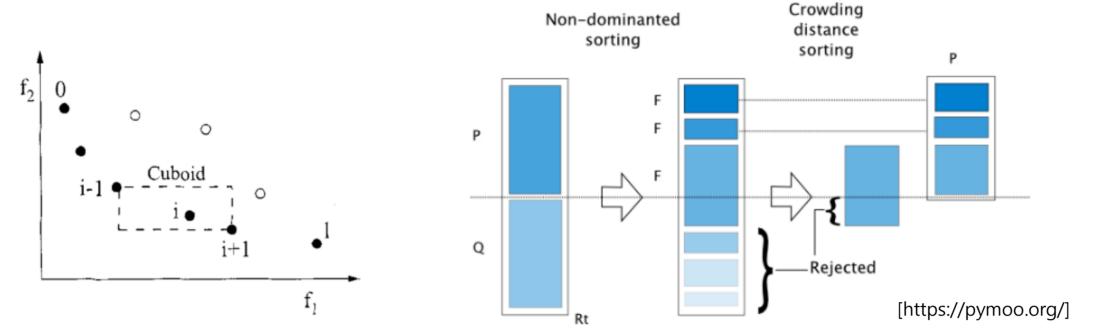
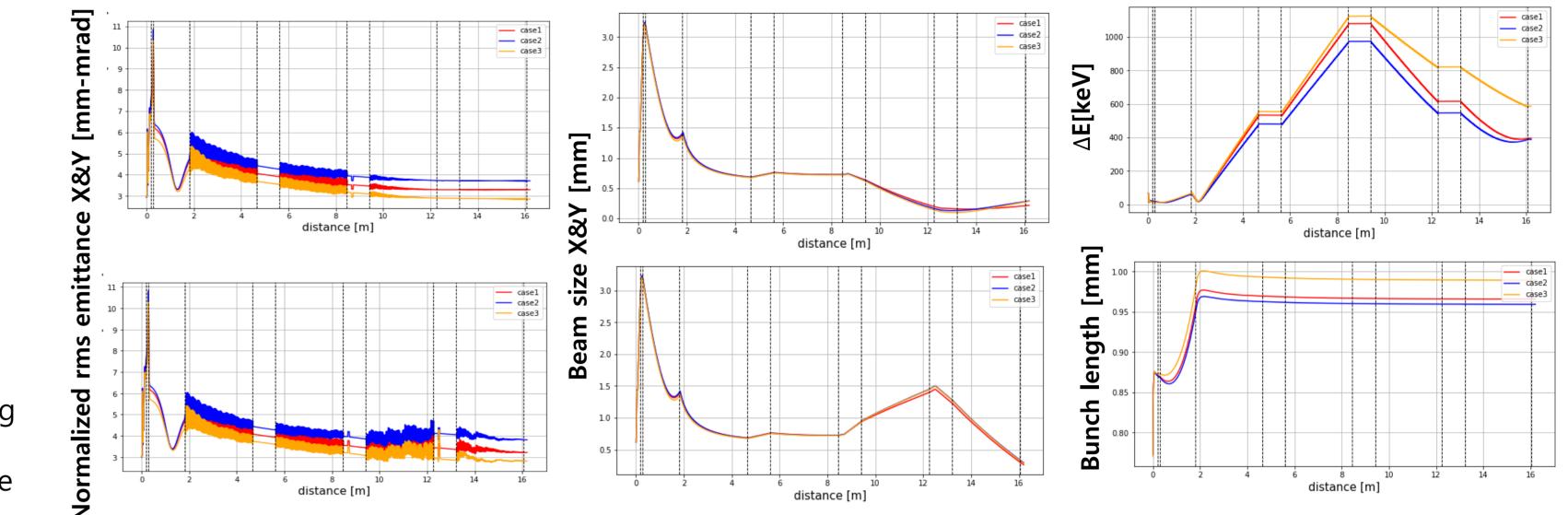
Integration of Multi-Objective Genetic Algorithm and neural networks in linac optimization

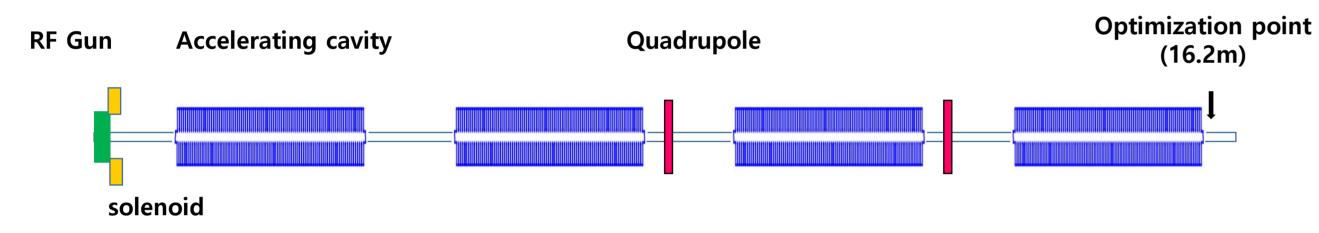
KIM Chanmi 1, PARK Chong Shik *1, KIM Eun San


Dept. of Accelerator Science, Korea University, Sejong, South Korea

Abstract


Multi-Objective Genetic Algorithm (MOGA) is one of promising approach for optimizing nonlinear beam dynamics in accelerators. For explorative problems that have many variables and local optima, however the performance of MOGA is not always satisfactory. To improve the efficiency of optimization in linac beam line, we propose a novel integration of MOGA and neural networks. The neural network is trained with the data produced in the evolution of the MOGA. The objective values of the offspring are estimated with the trained neural network. Based on the estimated results, those offspring are ranked with the nondominated sorting method. We therefore propose a novel Machine Learning technique in which nonlinear tracking is replaced by two well-trained neural networks to beam line lattice.

Multi-Objective Genetic Algorithm (NSGA-II algorithm)



beam tracking simulation

The algorithm follows the general outline of a genetic algorithm with a modified mating and survival selection. In NSGA-II, first, individuals are selected frontwise. By doing so, there will be the situation where a front needs to be split because not all individuals are allowed to survive. In this splitting front, solutions are selected based on crowding distance. The crowding distance is the Manhatten Distance in the objective space. However, the extreme points are desired to be kept every generation and, therefore, get assigned a crowding distance of infinity. Furthermore, to increase some selection pressure, NSGA-II uses a binary tournament mating selection. Each individual is first compared by rank and then crowding distance.

Iayout of the electron linac

- RF photocathode gun
- 4 accelerating structures
- One solenoid & 2 quadrupole

Optimization requirement (problem functions and variables)

mode	Energy	emittanceX	geometric	emittanceY	geometric	Xrms	Yrms	L bunch	Transmission	average E
mode	spread	enniturieex	emittance >	_c emittanceY	emittance Y	7(1115	11113	L_building	rate	average E
	[keV]	[mm-mrad]		[mm-mrad]		[mm]	[mm]	[mm]	[%]	[MeV]
Case1	381.50	3.2990	8.44	3.2145	8.18	0.21760	0.26149	0.96584	100	200.16
Case2	372.17	3.7122	9.52	3.8144	9.71	0.29162	0.29447	0.95932	100	200.61
Case3	584.24	2.8520	7.37	2.8147	7.21	0.28593	0.28566	0.98924	100	200.92
	<1MeV(0.5	5%)	<10nm		<10nm			< 1mm		

machine learning using MOGA data

Input data : RF gun phase, acc1&2 phase, acc3&4 phase : 3 Output data : rms energy spread : 1 Total data(train/test) : 10000 (7000/3000) Moga generation : 200~220 Layer : 6

Case 1 :
train data transform type : normalize
Activation function : ReLU (Rectified Linear Unit)

Case 2 :

generation

RF gun

acc1&2

acc3&4

solenoid

quad 1

train data transform type : raw data

case1	case2
2553.077881	353.7229309
2602.841309	353.7229309
2652.60498	353.7229309
2702.368164	353.7229309
2752.131836	353.7230835
2801.89502	353.7247009

Objectives (3)			Unit	
Normalized rms emitta	nce X&Y	Minimization	mm-mrad	
rms energy sprea	ad	Minimization	keV	
Constraint (7)		Unit	Variables (6)	range
Beam size X &Y (rms)	< 0.3	mm	RF gun phase	0~360
Divergence X&Y	< 0.2663	mrad	Acc1&2 phase Acc3&4 phase	0~360 0~360
Bunch length	< 1.0	mm	Solenoid	0.15~0.21
Transmission rate	>99.99	%	Quad 1&2	1~3(-4~-1)

MeV

Activation function : Tanh (Hyperbolic Tangent) Acc1&2 phase and acc 3&4 phase fix unit range

degree

degree

degree

T/m

2851.658203	353.724823
2901.421875	353.724823
2951.185547	353.724823
3000.948486	353.724823

Input data : RF gun phase, acc1&2 phase, acc3&4 phase : 3 Output data : rms energy spread : 1 Total data(train/test) : 10000 (7000/3000) layer : 6 **Activation function : Tanh**

281

Training data range	

14

200

67.26912 0.049265 0.049265

96.30259 1.124652 0.896699

349.5431 8.961445 10.19618

0.075308 1.84E-05 1.84E-05

4.732247 0.035038 0.041793

quad 2 4.905732 0.029668 0.026938

Moga generation (step :20)
RF gun phase (120~210)

Moga generation (281) Acc1&2 phase(0~100)

	1		
14	200	281	281
1871.229492	353.7229309	398.4751587	398.4760132
1871.229492	353.7229309	398.4751587	398.4760132
1871.229492	353.7229309	398.4751587	398.4760132
1871.229492	353.7229309	398.4751587	398.4760132
1871.229492	353.7230835	398.4752197	398.4760132
1871.229492	353.7247009	398.4762573	398.4761047
1871.229492	353.724823	398.4768066	398.4768066
1871.229492	353.724823	398.4768066	398.4768066
1871.229492	353.724823	398.4768066	398.4768066
1871.229492	353.724823	398.4768066	398.4768066

Input data : RF gun phase, acc1&2 phase, acc3&4 phase : 6 **Output data : rms energy spread (or emittance)** : 1 Total data(train/test) : 10000 (7000/3000) **Activation function : Tanh**

RF gun phase (120~210) Train output data Energy spread : 398.80032 Emittance : 3.7936825

ASTRA tracking simulation output

RF gun phase	energy spread	emittance x	transmission rate
210	781.71	6.0387	100
200	568.66	7.1091	100
190	1882.2	10.614	85.95
180	2791.1	2.3695	28.67

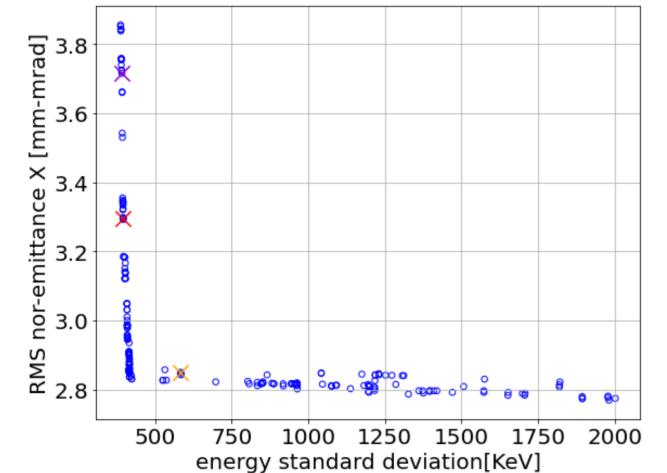
Beam tracking code

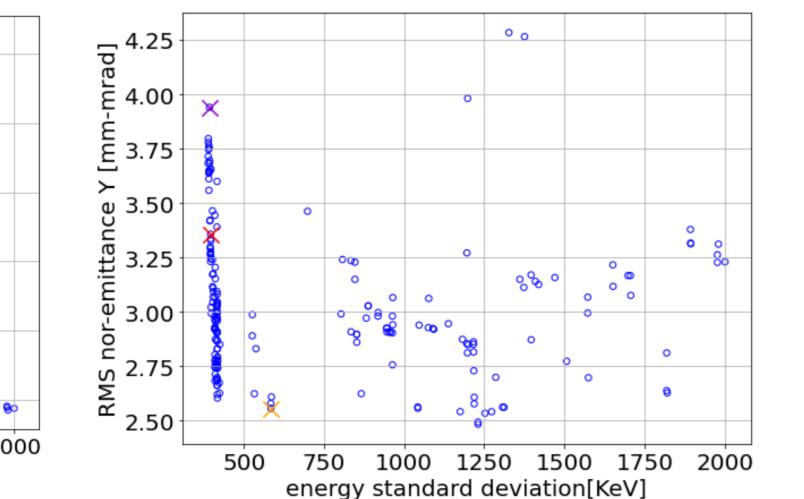
Average energy

: ASTRA code

Optimization algorithm

: Multi-Objective Genetic Algorithm (MOGA)


: pymoo (base : python)


Population : 500 / offspring : 250/ generation : 300

>200

Result of optimization

Objective space

Tool

Output : energy spread RF gun phase : 120~210 (step : 10)

	longitudinal	Trans	verse	
	Energy spread	Emittance X	Emittance Y	The optimized Pareto front data in objective space The three cases selected to compare beam tracking simulation
Case1	0.5	0.25	0.25	based on the importance of objectives
Case2	0.8	0.1	0.1	The objective weights are determined by the ratios of the thre objectives
case3	0.3	0.35	0.35	

The output values for input variables reflecting the train data are different from the results of beam tracking simulation.

Future plan

- We need to find the reason why the train results and beam tracking simulation results are different.

- : Increasing the number of train data
- : Obtain data suitable for machine learning from moga
- : Adjusting other hyper-parameters used in machine learning

(number of layers, Hidden size, Epochs, Learning rate, Data rate, etc.)

