
Transformers for Time Series
Not just for Natural Language tasks

5 March 2024

Anton Lu
Verena Kain, Michael Schenk, Borja Rodrigo Mateos

Data Science for Beam Operations
Beams Department
CERN

ICFA MLAPA Workshop 2024, Gyeong-ju, Korea



Contents

• Time series overview

• Deconstructing the Transformer

• Hands-on

• Advanced Architectures

• Conclusions

5 March 2024



Time Series

• Time series consist of
Data points ordered in time
Preferably in regular intervals
Typically, 3 (or 4) main components

• Time axis not strictly needed but helpful to
Order data
Perform analysis, like in finance and prediction of natural or artificial phenomenon
Temporal resolution of the time series depends on the use-case
• Often in minutes, hours, days, weeks, month, ...
• Sub-second resolution is not as common

Come in different forms
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Examples:
• Electricity
• Weather
• Stock prices



• Single time series forecasting (with time)
The future may be forecasted just by looking at the past

• Analysis and ML forecasting methods for this is 
widely researched

Simple methods like moving average, regression and 
basic neural networks can often be sufficient, depending 
on the accuracy required

Univariate forecasting Multivariate forecasting
• Forecasting with multiple time series

Access to conditional past and future data, both 
continuous and categorical

• Accurate forecasting is a difficult task 
Dependency on multiple covariates
Long-range dependencies
Inherent uncertainty in input and target data

• Long-term Time Series Forecasting (LTSF) a 
rapidly expanding field in ML

But depending on the task, high-precision 
forecasting is not so commonly seen
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Predicting the future
Time Series Forecasting
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Predicting the future
Time Series Forecasting
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Sequence-to-Sequence neural models

• In physics we often build transfer 
functions 𝑓: 𝑥 → 𝑦 where the the 
dynamics are time and past 
dependent, i.e. 𝑦! =
𝑓(𝑥!, 𝑥!"#, … , 𝑦!"#, … )

Represent the data as a time series 
and use sequence-to-sequence 
models
Can be seen as multivariate time-
series forecasting

Is this Forecasting?
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EXAMPLE

past future

Example: predict future magnetic field 𝐵 
as a function of excitation current 𝐼 

Find the relationship 𝑓: 𝐼 → 𝐵, or 𝐵! =
𝑓 𝐼!, 𝐼!"#, … , 𝐵!"#, …
The relationship is non-trivial as static 
and dynamic effects make the field 
difficult to model



Sequence-to-Sequence neural models

• In physics we often build transfer functions 𝑓: 𝑥 → 𝑦 where the the dynamics are time 
and past dependent, i.e. 𝑦! = 𝑓(𝑥!, 𝑥!"#, … , 𝑦!"#, … )

Represent the data as a time series and use sequence-to-sequence models

• RNNs like GRUs and LSTMs represent the previous state-of-the-art sequence-to-
sequence modeling

Recurrent Neural Networks
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Example: 𝐵 → 𝐵

𝑓

𝐵! !"#:%&' 𝐵! !"%:…
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Example: 𝐼 → 𝐵

𝑓

{𝐼!}!"%:… 𝐵! !"%:…
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Example: 𝐼 → 𝐵

𝑓

{𝐼!}!"#:… 𝐵! !"%:…𝐵! !"#:%&'



Sequence-to-Sequence neural models

• The State-of-the-Art for sequence modeling
Self attention
No-recurrent units, allowing parallel computation
Widely used in almost all language tasks now
• Machine translation
• Text generation
• Question answering

Enter the Transformer
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arXiv:1706.03762

https://arxiv.org/abs/1706.03762


Sequence-to-Sequence neural models

• The State-of-the-Art for sequence modeling
Powered by the multi-headed self-attention
No-recurrent units, allowing parallel computation
As opposed to RNNs, transformers have two inputs

Enter the Transformer
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Sequence-to-Sequence neural models
Enter the Transformer
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Future B: 𝐵! !"#:…

• Example: predicting future 𝐵, as univariate time series
• This does not make any sense since we know that future 
𝐵 depends on 𝐼

Past B: 𝐵! !"&:#'( {0}



𝑁	×
𝑁	×

Sequence-to-Sequence neural models

• Example: predicting future 𝐵, conditioned on 
past and future 𝐼

Multivariate time series “forecasting”

Enter the Transformer
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Past B: 𝐵! !"&:#'( {0}

Future B: 𝐵! !"#:…

Past I: 𝐼! !"&:#'( 𝐼! !"#:…



Deconstructing the Transformer

Process an input sequence 
(e.g. a sentence) and extract 
meaningful, context-aware 
representation

Encoder-only examples

• BERT
arXiv:1810.04805

Encoder-Decoder models
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Generate an output sequence 
based on the context 
provided by the encoder, 
autoregressively

Decoder-only examples
• GPT
arXiv:2005.14165

𝑁	×
𝑁	×

Past 𝐵 {0}
Past 𝐼 Future 𝐼

Future 𝐵

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165


Deconstructing the Transformer
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Let us break down the 
transformer piece-by-piece

Understanding the Encoder 
makes understanding the 
Decoder easy

Future 𝐵

Past 𝐵 {0}
Past 𝐼 Future 𝐼

𝑁	×
𝑁	×



Deconstructing the Transformer
Embedding and positional encoding
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Past 𝐵 {0}

Future 𝐵

Past 𝐼 Future 𝐼



Deconstructing the Transformer
Embedding and positional encoding
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The same steps are applied for 
inputs and outputs, just with 
different data Past 𝐵 {0}

Past 𝐼 Future 𝐼



Deconstructing the Transformer
Embedding and positional encoding
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Past 𝐵
Past 𝐼

Embedded
past

Encoder
input



Past 𝐵
Past 𝐼

Deconstructing the Transformer

Embedding
• Inputs must be transformed 

from input space to embedded 
feature space

Typically using linear layers or 
even RNNs
In NLP this can be word 
embeddings like word2vec or 
BERT

Embedding and positional encoding
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Past 𝐵
Past 𝐼

𝑛 !
"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ

Embedded
past

2

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ



Past 𝐵
Past 𝐼

Deconstructing the Transformer
Embedding and positional encoding
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Past 𝐵
Past 𝐼

Positional encoding
• The transformer does not 

know the order of the inputs
Add positional information with 
positional encodings
Usually with a sin + cos encoding
Add the position information 
point-wise to the embeddings

[1, 2, 3, 4, 5, 6, … , ]

𝑛 !
"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛 !
"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ

Embedded
past

Encoder
input

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ

{}

2

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ



Past 𝐵
Past 𝐼

Deconstructing the Transformer
Embedding and positional encoding
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Embedded
past

Encoder
input

2

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ



Deconstructing the Transformer
The Encoder Layer
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Past 𝐵 {0}

Future 𝐵

Past 𝐼 Future 𝐼



Attention input
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑙𝑒𝑛𝑔𝑡ℎ

Deconstructing the Transformer

• The block learns context-aware 
representations from attention
• Repeated layers allow transformer to 

learn complex patterns
• Residual connections allow 

information to propagate

The Encoder Layer
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Encoder block
input

Encoder block
output

Repeat 𝑁 times

𝑛 !
"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛 !
"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ



Attention input
Attention input

Self-AttentionSelf-Attention

Deconstructing the Transformer
Self-Attention
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𝑛 !
"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑙𝑒𝑛𝑔𝑡ℎ

Attention input



Deconstructing the Transformer
Multi-Head Self-Attention
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Self-Attention
𝑛 !

"#
/𝑀

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑙𝑒𝑛𝑔𝑡ℎ

𝑀	× 

Attention input Attention input

𝑛 !
"#
/𝑀

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑙𝑒𝑛𝑔𝑡ℎ

Self-Attention

Concatenate

…

Multi-head 
attention output𝑛 !

"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ

Q K V



Deconstructing the Transformer
Multi-Head Self-Attention
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Q K V

Self Attention = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥( )	+!

⁄-"#$ .
)𝑉	



Deconstructing the Transformer

• The block learns context-aware 
representations from attention
• Repeated layers allow transformer to 

learn complex patterns
• Residual connections allow 

information to propagate

The Encoder Layer
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Encoder block
input

Encoder block
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Repeat 𝑁 times
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𝑛 !
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Deconstructing the Transformer
The Decoder Layer

5 March 2024

Past 𝐵 {0}

Future 𝐵

Past 𝐼 Future 𝐼



Deconstructing the Transformer

• Masked attention hides the future 
during decoding
• Encoder output make the Query and 

Key in multi-head attention
• Residual connections allow 

information to propagate

The Decoder Layer
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Decoder block
input

Decoder block
output

Repeat 𝑁 times
Encoder
Output

𝑛 !
"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑡𝑎𝑟𝑔𝑒𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛 !
"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑡𝑎𝑟𝑔𝑒𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛 !
"#

𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑠𝑒𝑞. 𝑙𝑒𝑛𝑔𝑡ℎ



Deconstructing the Transformer
Output projection

5 March 2024

Past 𝐵 {0}

Future 𝐵

Past 𝐼 Future 𝐼



Deconstructing the Transformer

• In NLP, we predict the next token (classification)

Output projection
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Future 𝐵Target Prediction

Deconstructing the Transformer

• In NLP, we predict the next token (classification)
• In time series, we want the future value (regression)
• Use feed-forward layers to project embeddings to 1 (for 

point estimate), or many (for other loss functions)

Output projection
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Decoder output

𝑛 !
"#

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒𝑡𝑎𝑟𝑔𝑒𝑡	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑙𝑒𝑛𝑔𝑡ℎ

Future 𝐵(1
)

𝑡𝑎𝑟𝑔𝑒𝑡	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒	𝑙𝑒𝑛𝑔𝑡ℎ

Fully Connected

𝑏𝑎
𝑡𝑐ℎ

𝑠𝑖𝑧
𝑒



Deconstructing the Transformer

Classic loss functions
For point-estimates: MSE, MAE
Quantile loss to learn prediction interval
NLL to learn probability distribution

Choice depends on task and data
• Does the data have a lot of inherent variance or outliers?

Loss function
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Loss

Past 𝐵 {0}

Future 𝐵

Past 𝐼 Future 𝐼

Fully Connected



Deconstructing the Transformer
Putting it all together
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Loss

Past 𝐵 {0}

Future 𝐵

Past 𝐼 Future 𝐼

Fully Connected



Hands-On
Let’s get our hands dirty in Python

35



Advanced Transformer Architectures for Time Series
Autoformer and Informer
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Informer – for long term time series forecasting

Autoformer – decomposing the time series components

… and many more
arXiv:2012.07436

arXiv:2106.13008

https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2106.13008


Advanced Transformer Architectures
Temporal Fusion Transformer
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arXiv:1912.09363

https://arxiv.org/abs/1912.09363


Transformer Alternatives for Time Series
TSMixer – An All MLP Architecture for Time Series Forecasting
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arXiv:2303.06053

https://arxiv.org/abs/2303.06053


Conclusions
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• Multivariate time series forecasting is a 
challenging task

Long prediction horizons and high accuracy is especially 
challenging

• Transformers represent the state-of-the-art of 
sequence modeling

Dominant in language tasks, but not for time series

• We have seen today
What goes in to a transformer …
… and what comes out on the other side …
… and how to do it in Python

• Have fun playing around with transformers!

Loss

Past 𝐵 {0}

Future 𝐵

Past 𝐼 Future 𝐼

Fully Connected



Appendix
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PyTorch Libraries with Transformer implementations for Time Series

• Huggingface transformers
• GluonTS
• Dart
• Neuralforecast
• Pytorch-forecasting
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