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Time Series CE/RW
Come in different forms | /W\/W STATIONARY \

* Time series consist of

TREND WWW

Examples:
> Data points ordered in time * Electricity
> Preferably in regular intervals * Weather

> Typically, 3 (or 4) main components * Stock prices

* Time axis not strictly needed but helpful to
> Order data
> Perform analysis, like in finance and prediction of natural or artificial phenomenon
> Temporal resolution of the time series depends on the use-case

e Often in minutes, hours, days, weeks, month, ...
* Sub-second resolution is not as common
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Time Series Forecasting CERN
Predicting the future \

Univariate forecasting Multivariate forecasting
* Single time series forecasting (with time) * Forecasting with multiple time series
> The future may be forecasted just by looking at the past > Access to conditional past and future data, both

. . . continuous and categorical
* Analysis and ML forecasting methods for this is :

widely researched

> Simple methods like moving average, regression and
basic neural networks can often be sufficient, depending > Long-range dependencies

on the accuracy required > Inherent uncertainty in input and target data

e Accurate forecasting is a difficult task
> Dependency on multiple covariates

* Long-term Time Series Forecasting (LTSF) a
rapidly expanding field in ML

W > But depending on the task, high-precision
; 1 forecasting is not so commonly seen

Target time series

2015.02.01
Time
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Time Series Forecasting
Predicting the future

Univariate forecasting

* Single time series forecasting (with time)
> The future may be forecasted just by looking at the past

* Analysis and ML forecasting methods for this is
widely researched

> Simple methods like moving average, regression and
basic neural networks can often be sufficient, depending

on the accuracy required

w

Target time series

2015.02.01
Time

Multivariate forecasting

* Forecasting with multiple time series

> Access to conditional past and future data, both
continuous and categorical

e Accurate forecasting is a difficult task

> Dependency on multiple covariates
> Long-range dependencies
> Inherent uncertainty in input and target data
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Sequence-to-Sequence neural models CE/RW

Is this Forecasting? Example: predict future magnetic field B \

as a function of excitation current | S

Find the relationship f:I - B, or B; =
. . Fle Iieq, o, Biq, o)
* |In physics we often build transfer The relationship is non-trivial as static

functions f x — v where the the and dynamic effects make the field
. ) . y difficult to model

dynamlcs are time and past

dependent, i.e. y; =

_ —— Current

f(xt, xt_l, . yt—ll ) T Tine dep. effects inField -
> Represent the data as a time series 7 s~ Past |
and use sequence-to-sequence
models

=
o

> Can be seen as multivariate time-
series forecasting
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Sequence-to-Sequence neural models CERN
Recurrent Neural Networks \
NS

* In physics we often build transfer functions f: x — y where the the dynamics are time
and past dependent, i.e. V¢ = f (X, X¢—1, eoes Vi1, oer )
> Represent the data as a time series and use sequence-to-sequence models

* RNNs like GRUs and LSTMs represent the previous state-of-the-art sequence-to-

sequence modeling Example: B — B
X .

{Bt}t=O:T—1 {Bt}t=T:...

® D
1 1
A A
® . & —-@—

5 March 2024 7

W, )
1

SR
S




Sequence-to-Sequence neural models CERN
Recurrent Neural Networks \
NS

* In physics we often build transfer functions f: x — y where the the dynamics are time
and past dependent, i.e. V¢ = f (X, X¢—1, eoes Vi1, oer )
> Represent the data as a time series and use sequence-to-sequence models

* RNNs like GRUs and LSTMs represent the previous state-of-the-art sequence-to-

sequence modeling Example: [ — B
X .

{It}t=T:... {Bt}t=T:...
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A A
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Sequence-to-Sequence neural models Cw

Recurrent Neural Networks \

N/, S

* In physics we often build transfer functions f: x — y where the the dynamics are time
and past dependent, i.e. V¢ = f (X, X¢—1, eoes Vi1, oer )
> Represent the data as a time series and use sequence-to-sequence models

* RNNs like GRUs and LSTMs represent the previous state-of-the-art sequence-to-

sequence modeling Example: [ — B
X .

{It}t=0:... {Bt}t=O:T—1 {Bt}t=T:...
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Sequence-to-Sequence neural models
Enter the Transformer

* The State-of-the-Art for sequence modeling
> Self attention
> No-recurrent units, allowing parallel computation
> Widely used in almost all language tasks now
* Machine translation

* Text generation
* Question answering

arXiv:1706.03762

5 March 2024
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Sequence-to-Sequence neural models
Enter the Transformer

* The State-of-the-Art for sequence modeling

> Powered by the multi-headed self-attention

> No-recurrent units, allowing parallel computation
> As opposed to RNNs, transformers have two inputs

5 March 2024
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Sequence-to-Sequence neural models Cw

Enter the Transformer
7

Future B: {B;}¢=r. ..

* Example: predicting future B, as univariate time series

* This does not make any sense since we know that future (i) )
Feed
B depends on | ormare
s | ~\ | Add &.Norm |<_:
—>{Add 8 Norm J Multi-Head
Feed Attention
Forward 7 7 Nx
- |
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Sequence-to-Sequence neural models
Enter the Transformer

Future B: {B;}¢=r. ..

 Example: predicting future B, conditioned on
past and future | ,
> Multivariate time series “forecasting” Foed
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Deconstructing the Transformer
Encoder-Decoder models

Process an input sequence
(e.g. a sentence) and extract
meaningful, context-aware
representation
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Decoder-only examples

- GPT
arXiv:2005.14165

cw
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Generate an output sequence
based on the context
provided by the encoder,
autoregressively
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Deconstructing the Transformer
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Deconstructing the Transformer
Embedding and positional encoding

5 March 2024
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Deconstructing the Transformer CERN
Embedding and positional encoding \
7

Positional Positional
Encoding Encoding

- nout Output
The same steps are applied for St 1 Embedding

inputs and outputs, just with
different data Past B
Past [
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Deconstructing the Transformer
Embedding and positional encoding

Transformers for Time Series - ICFA MLAPA Workshop 2024
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Deconstructing the Transformer
Embedding and positional encoding

Embedding

* Inputs must be transformed
from input space to embedded
feature space

> Typically using linear layers or
even RNNs

> In NLP this can be word

embeddings like word2vec or
BERT
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Input
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Deconstructing the Transformer
Positional encoding

e The transformer does not

Embedding and positional encoding
£ Encoder
s input &
context seq. length ¥ know the order of the inputs
T > Add positional information with
positional encodings
> Usually with a sin + cos encoding

i > Add the position information

5 Embedded
&‘:@ < past &
A \00'. Q . . M
context seq.length . pOInt-Wlse to the embeddlngs

context seq.length 3
Input
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context seq.length
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Deconstructing the Transformer CEaN
Embedding and positional encoding \
7
Embedding Positional encoding
S Encoder
* Inputs must be transformed < input ~ ° The transformer does not
from input space to embedded context seq.length ¥*  know the order of the inputs
feature space B QT > Add positional information with
> Typically using linear layers or positional encodings
even RNNs £ I > Usually with a sin + cos function
> In NLP this can be word ) i & > Add the position information
embeddings like word2vec or context seq.length T point-wise to the embeddings
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Deconstructing the Transformer
The Encoder Layer

\.
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Deconstructing the Transformer
The Encoder Layer

* The block learns context-aware
representations from attention

* Repeated layers allow transformer to
learn complex patterns

e Residual connections allow
information to propagate
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Deconstructing the Transformer
Self-Attention
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Deconstructing the Transformer

Multi-Head Self-Attention
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Deconstructing the Transformer
Multi-Head Self-Attention
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Deconstructing the Transformer
The Encoder Layer

* The block learns context-aware
representations from attention

* Repeated layers allow transformer to
learn complex patterns

e Residual connections allow
information to propagate
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Deconstructing the Transformer
The Decoder Layer

\.
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Deconstructing the Transformer

CERN
The Decoder Layer \w

. . § Decoder block
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Deconstructing the Transformer

Output projection
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Deconstructing the Transformer
Output projection

* In NLP, we predict the next token (classification)
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Deconstructing the Transformer

bt CERN
Output projection \/-wl

* In NLP, we predict the next token (classification)
* In time series, we want the future value (regression)

» Use feed-forward layers to project embeddings to 1 (for
point estimate), or many (for other loss functions)

(1

||IIIIIIEI!!!!IIIIIIII|I
&

X
S
target sequence length ~ © &

T

[ Fully Connected ]
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v
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Deconstructing the Transformer
Loss function

Classic loss functions
> For point-estimates: MSE, MAE
> Quantile loss to learn prediction interval
> NLL to learn probability distribution

> Choice depends on task and data
 Does the data have a lot of inherent variance or outliers?
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Deconstructing the Transformer
Putting it all together
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Hands-On

Let’s get our hands dirty in Python
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Advanced Transformer Architectures for Time Series

Autoformer and Informer

Informer — for long term time series forecasting
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.. and many more
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Advanced Transformer Architectures
Temporal Fusion Transformer
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Transformer Alternatives for Time Series
TSMixer — An All MILP Architecture for Time Series Forecasting \
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Conclusions

CE/RW
\

Loss

Multivariate time series forecasting is a
challenging task
> Long prediction horizons and high accuracy is especially
challenging

Transformers represent the state-of-the-art of
sequence modeling
> Dominant in language tasks, but not for time series

We have seen today

> What goes in to a transformer ...
> ... and what comes out on the other side ...
> ...and how to do it in Python

Have fun playing around with transformers!
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PyTorch Libraries with Transformer implementations for Time Series CE/RW
\

N/, S

* Huggingface transformers
 GluonTS

* Dart
* Neuralforecast
e Pytorch-forecasting
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