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Outline



• Accelerator Modeling or Design
• Running (space charge) simulations multiples times
• Examine hundreds of thousands of simulations for hundreds of thousands of machine 

parameters
• Differentiable Simulation can be effectively used in beam dynamics simulations for 

particle accelerators
• The key to differentiable simulation is the ability to compute gradients of beam properties, such 

as emittance, beam size, orbit, w.r.t input parameters (initial beam conditions and accelerator 
configuration)

• However, Space Charge Effects in beam dynamics introduces complexity
• Modeling space charge effects accurately is crucial for predicting and optimizing the performance 

of high intensity particle accelerators
• The nonlinear nature of space charge effects makes the problem the computation resource 

intensive
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Accelerator Modeling with Differentiable Simulations



• The Hamiltonian of 𝑁! charged particle system in an accelerator element can be split 

into 𝐻 = 𝐻" +𝐻#  where 

𝐻" =
"
#$
∑%
&! 𝑝'%# + 𝑝(%# + (𝑝)% − 𝑞𝐴),+',)#  and 𝐻# = 𝑞𝜙-+./

• Using the split operator method, a state of the system at time 𝜏,

𝑋 𝜏 = 	ℳ 𝜏 𝑋 0 = ℳ" 𝜏/2 ℳ# 𝜏 ℳ" 𝜏/2 𝑋 0 + 𝑂(𝜏0)

• ℳ" is a well-known single step transfer map for a (non)linear element.

• For the space charge Hamiltonian 𝐻#, the transfer map ℳ# can be derived from

𝑟(𝜏) = 𝑟 0  and 𝑝⃗ 𝜏 = 𝑝⃗ 0 − 𝜏∇𝐻# = 𝑝⃗ 0 − 𝜏𝑞∇𝜙
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Equations of Motion for Charged Particle System



• General Solution of the Poisson Equation with Green’s function

𝜙 𝑟 =
1
𝜀1
:𝐺 𝑟, 𝑟2 𝜌 𝑟2 𝑑0𝑟2 =

1
4𝜋𝜀1

:
1

𝑟 − 𝑟2 𝜌 𝑟2 𝑑0𝑟2

• Consideration of Boundary Conditions
• Inclusion of boundary conditions adds complexity.

• Open boundary conditions are preferred.

• This is true if the pipe radius in an accelerator is much larger than the beam bunch transverse size

• Challenges in Green's Function Approach
• Green's function offers valuable insights and computational techniques: Hockney-Eastwood Algorithm

• Long-range integration and singularities require careful consideration and implementation.
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Space Charge Solvers with Green’s Function Method



• Hockney-Eastwood Algorithm (HE):

• Utilizes Fast Fourier Transform (FFT) with zero-

padding of distribution.

• Leveraging the Convolution Theorem

• Calculation of Potential:
• Potential at mesh point (𝑝, 𝑞) as a sum of 

contributions from all source points (𝑝!, 𝑞!)

𝜙 𝑝, 𝑞 =
ℎ"ℎ#ℎ$
𝜀%

*𝐺 𝑝, 𝑞; 𝑝!, 𝑞! 𝜌(𝑝!, 𝑞!)

• Using Convolution Theorem:
• Expresses the potential as the convolution of the 

source distribution 𝜌 with the Green's function of 
the interaction potential 𝐺. 

𝜙 𝑟 =
ℎ!ℎ"ℎ#
𝜀$

ℱ%& (ℱ 𝐺 ℱ 𝜌

• Applicability of the Convolution Method:
• Solves a periodic system of sources with arbitrary 

interaction forms.

• No conductors or boundaries allowed.

• Ideal for situations where the pipe radius in an 
accelerator significantly exceeds the beam bunch 
transverse size.
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Hockney-Eastwood Algorithm



• Limitation of HE FFT Method
• Utilizes Green’s function with long-range definition and 

singularities at 𝑟 = 𝑟'

• Has been improved with Integrated Green’s Function 
Method and Shifted Green’s Function Method

• Introducing Truncated Spectral Kernel
• Vico et al, https://doi.org/10.1016/j.jcp.2016.07.028 

𝐺 𝑟 ⟹	𝐺( 𝑟 = 𝐺(𝑟)rect )
*(

,

• Conditions for Truncation
• Truncated spectral kernel applies when 𝐿 > 𝑑	 (with 

dimension 𝑑) and compactly support distribution

• The indicator function rect 𝑥  is defined as

rect 𝑥 = 71, 𝑥 ≤ 1/2
0, 𝑥 > 1/2

• Analytical Green's Function
• The Fourier transform of the Green’s function is solvable 

analytically for a radially symmetric charge distribution

• Fourier Transform of 𝐺>

ℱ 𝐺! = 2
sin

𝐿 𝑘
2

𝑘

"

• The potential:

𝜙 𝑟 =
1
𝜀#

1
(2𝜋)$

7𝑒%&')⃗2
sin

𝐿 𝑘
2

𝑘

"

ℱ 𝜌 𝑘 𝑑$𝑘

• Efficiency and Applicability
• The TGF Poisson Solver simplifies potential calculation with 

analytical Green's function, enhancing computational efficiency.
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Truncated Green’s Function (TGF) Method

Vico-Greengard-Ferrando Poisson Solver

https://doi.org/10.1016/j.jcp.2016.07.028


Benchmarking

• Gaussian Charge Distribution:

𝜌 𝑟 = !
( #$%)*

𝑒 ' +,

,-, ,

• Grid Domain

• Utilize 𝑁.×𝑁/×𝑁0  grid domain

• Simplifying the problem: 𝑁 = 𝑁. = 𝑁/ = 𝑁0  

• The Exact Poisson Solution:

𝜙 𝑟 =
𝑄

4𝜋𝜀(
1
𝑟
erf

𝑟
2𝜎

Implementation

• Space Charge Potential

𝜙 𝑟 =
1
𝜀%

1
(2𝜋);

?𝑒<=>?⃗2
sin

𝐿 𝑘
2

𝑘

@

ℱ 𝜌 𝑘 𝑑;𝑘

1. Green’s function kernel computation
2. Fourier Transform of the charge distribution
3. Inverse Fourier Transform of the convolution

• Grid Domain for Efficient Computation
• (4N) grid domains are needed in each direction.

• cf. (2N)  number of grid domains is needed for HE
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Implementation of Algorithms and Benchmarking
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Comparison of Space Charge Solvers

Potentials along the x-axis for a different number of grids 

N = 16 N = 32 N = 64

• With a small value of 𝑁, the Hockney-Eastwood (HE) algorithm may exhibit significant deviations, especially at the beam center.

• Increasing the value of 𝑁, this observed deviation is reduced.
• Unlike HE, the accuracy of the TGF algorithm is not significantly influenced by the number of grid sizes.



• Automatic Differentiation Tool: 
• Utilize advanced differentiation tools like TensorFlow, PyTorch, or JAX for computational 

flexibility.

• Model Implementation: 
• Within the selected framework, compute the charge distribution, Green's function, and 

numerical integrations. For convolution operations, apply the Fourier transform method.

• Gradient Computation: 
• Harness the AD tool to calculate gradients concerning parameters of interest, streamlining 

objective analysis.

• Optimization: 
• Deploy gradient-based optimization techniques to refine parameters, steering results toward 

optimal outcomes.
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Leveraging AD for Simulation Optimization



• Differential Algebra (DA)
• DA: Algebraic methods for analytic problem solving, introduced by M. Berz in 1986.

• Wide Adoption: Implemented in accelerator simulation codes like COSY-Infinity, PTC, MAD-X PTC, Bmad, and 
CHEF(MXYZPTLK).

• Truncated Power Series Algebra (TPSA)
• TPSA employs truncated power series expansions.

• Approximates functions by retaining a finite number of terms in power series.

• Advantages: Generates infinite order power series, offering comprehensive and accurate calculations.

• Practical Use in Accelerator Simulations
• TPSA is a vital tool in beam dynamics analysis.

• It handles complex mathematical representations, ensuring precision and reliability.
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Differential Algebra and TPSA



Basic Operations in TPSA, 1D1

• 𝑎%, 𝑎A + 𝑏%, 𝑏A = 𝑎% + 𝑏%, 𝑎A + 𝑏A
• 𝑐 𝑎%, 𝑎A = 𝑐𝑎%, 𝑐𝑎A
• 𝑎%, 𝑎A M 𝑏%, 𝑏A = 𝑎%𝑏%, 𝑎%𝑏A + 𝑎A𝑏%

• 𝑎%, 𝑎A BA = A
C+
, − C,

C+-
	

• Any special functions can be decomposed into a finite 
number of vector additions and multiplications

• DA can be expanded into higher order n with multiple 
variables, v:	nDv	

Examples of TPSA in 1D1

• For a given function, 

• 𝑓 𝑥 = A
"DA/"

• We know that 

• 𝑓! 𝑥 = − ABA/"-

("DA/")-

• Therefore, 𝑓 3 = ;
A%
, 𝑓! 3 = − @

@F

• If we use TPSA with the DA vector 𝑣 = 3,1 = 3 + (0,1)

• 𝑓 𝑣 = 𝑓 3,1 = A
;,A DA/ ;,A = ;

A% , −
@
@F
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Basics of Truncated Power Series Algebra



• H. Zhang et al: FMM Application (Nucl. Inst. Meth. A 645 (2011) 338-344)
• Applied DA techniques to the Fast Multipole Method (FMM) for space charge calculations.

• Their work offers valuable insights into the effective use of DA in space charge effect computations.

• B. Erdelyi et al: Duffy Transformation (Comm. Comp. Phys. 17 (2015), pp 47-78)
• Employed the Duffy transformation to solve the Poisson equation with Green's functions.

• This method splits integrals into smaller domains, eliminating singularities associated with Green's functions.

• J. Qiang: TPSA for Local Derivatives (Phys. Rev. Accel. Beams 26, 024601 (2023))
• Focuses on using TPSA techniques to derive local derivatives of beam properties with respect to accelerator design 

parameters.

• Investigates coasting beam behavior within a rectangular conducting pipe.

• Collective Impact of DA Techniques
• These three research contributions collectively demonstrate how DA techniques are leveraged to enhance space charge 

calculations.

• They offer innovative methods and solutions that contribute to the advancement of accelerator physics.
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Advancements in SC Calculations Using DA



• PIC Method for Space Charge Field Computation and Its Numerical Errors
• Particle-in-Cell (PIC) method is widely used in accelerator simulations but introduces computational errors due to its 

numerical nature.
• Numerical computation of field derivatives is also susceptible to errors.

• The Convolutional Approach
• An alternative approach involves direct field computation using a convolutional method with the truncated Green function.
• This method helps mitigate computational errors inherent in PIC simulations.

• Direct Electric Field Calculation
• With the truncated Green’s function, electric fields can be directly calculated.

𝐸 𝑟 = −∇𝜙 =
1
𝜀(

1
(2𝜋)+

6𝑖𝑘𝑒,-.0⃗12
sin

𝐿 𝑘
2

𝑘

#

ℱ 𝜌 𝑘 𝑑+𝑘

• Advantages of TPSA Techniques
• Truncated Power Series Algebra (TPSA) techniques facilitate the automatic calculation of higher-order derivatives.
• Provide a systematic and efficient approach to handle these derivatives.
• Enable precise and reliable computations of space charge field properties concerning beam properties.
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Enhancing Precision in SC Field Computations



• Leveraging Differential Algebra (DA)
• Utilizing a DA vector and DA operations for higher-order 

derivative calculations.
• Accurate and efficient assessment of space charge potential 

properties using the truncated Green's function.

• DA Vector for Systematic Differentiation
• The DA vector represents the potential function.
• Systematic differentiation with respect to variables of interest 

becomes feasible.

• Comprehensive Understanding of Space Charge Potential
• These operations enable the calculation of derivatives of 

arbitrary order.
• Providing a comprehensive understanding of space charge 

potential and its associated properties.
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Advancing Space Charge Potential Analysis with DA



• Accelerator Modeling Simulations
• Traditional modeling demands extensive simulations to assess machine parameter influences on beam 

properties.
• Differentiable simulations allow for efficient gradient calculation with respect to inputs, crucial for machine 

learning and optimization

• Improvement in Space Charge Field Calculations
• Comparative analysis highlights the strengths and limitations of space charge solvers
• Noting that the Truncated Green’s Function method's efficiency in handling long-range integrations and 

singularities.

• Differentiable Simulations in Beam Dynamics
• Differentiable simulation techniques are integrated within accelerator design to optimize the beam 

properties, employing advanced tools like TensorFlow and PyTorch.
• The use of DA and TPSA in accelerator physics ensures precision in the simulation and optimization 

processes, paving the way for more accurate models with space charge field calculations
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Summary



Thank You for Your Attention!

03/08/2024 Chong Shik Park | MaLAPA, March. 5-8, 2024, Gyeongju, South Korea 17


