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How do we see Machine Learning at the EuXFEL?

■ Goal: maximize scientific outcome.
■ But ... not all approaches are equal.
■ Users have the last word on how to do their experiments.
■ Let’s manufacture consensus.

Characteristics:
■ interpretability → what do the results mean?
■ context-aware → connects to the science?
■ quality control → conditions for operation?

How to achieve it:
■ Clarify inner workings.
■ Shape it based on science.
■ Estimate region of validity.
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Virtual Spectrometer



Interpretable Machine Learning at the EuXFEL Danilo Ferreira de Lima et al (EuXFEL) March 2024 4

Enhancing non-invasive X-ray diagnostics

Photo-Electron Spectrometer (PES)
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■ Non-invasive.
■ Pulse-resolved.
■ Complex calibration.
■ Low resolution.

■ Invasive.
■ Train-resolved.
■ Simple calibration.
■ High resolution.
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Enhancing non-invasive X-ray diagnostics: method

Training Inference

Collect data
(PES xxx , GS yyy )

Denoise
and reduce

x̄̄x̄x = PCA(xxx)

Denoise
and reduce

ȳ̄ȳy = PCA(yyy)

Fit
ȳ̄ȳy = f (x̄̄x̄x)

Collect data
(PES xxx′)

Denoise and reduce

Predict
ŷ ′ŷ ′ŷ ′ = PCA−1(f (x̄ ′x̄′x̄ ′))
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uncertainty
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Virtual Spectrometer’s resolution
■ Systematic resolution studies under several conditions done.
■ Comparison with PES show better resolution.
■ Resolution calculated after training to inform scientists.
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Deployment online and outlook

■ Deployed in control system with simple
interface to retrieve data and integrate
ML projects.

■ Combines advantages of low- and
high-resolution devices:
■ Non-invasive.
■ Pulse-resolved.
■ Automated calibration.
■ Improved resolution.

■ Adheres to self-defined guidelines:
■ Embedded quality control.
■ Resolution and uncertainty estimate

⇒ interpretability.
■ SASE principle guides denoising ⇒

context-aware.

■ Outlook:
■ Expand project for hard photons.
■ Interpolate conditions to avoid

pre-training stage.
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Automated data analysis
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Streamlining data analysis using ML
■ Often data analysis pipelines have parameters.

■ Idea: Simplify data analysis for non-experts.

Optimize

U
pdate

param
s.

Improved
decisions

■ Goal: Tune parameters to maximize a
metric.

■ This example: maximize the fraction of
indexed frames f .

■ Online: fast feedback, higher success
chances.

■ Offline: improved scientific findings.
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Streamlining data analysis using ML: example
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■ Hen Egg-White (HEW) Lysozyme.
■ AGIPD detector at EuXFEL SPB/SFX.
■ Web interface shows optimization progress ⇒ interpretability.
■ Quality metrics also available.
■ Optimizes clear science-based metrics ⇒ context-aware.
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Automated multi-modular geometry
tuning
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Multi-modular geometry tuning
■ Misalignment on module positions.

■ Manual alignment: requires lots of time.
■ Powder diffraction data are often the starting point for techniques requiring high-precision.
■ Powder diffraction-based methods require many parameters and often manual tuning.

■ Let’s start with powder diffraction: can we improve and automate it?
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An information-theoretical approach
■ Optimizes the mutual information between radial distance and azimuthal angle →

measures independence ⇒ context-aware and interpretable.
■ Pre-processing includes background subtraction and polar coordinate transformation.
■ Only first step in a long pipeline due to the limited experimental method resolution.
■ Validation tools available ⇒ quality metrics.

Before inter-module tuning
Tuning only detector-sample distance

After inter-module tuning
Additionally, inter-module separation tuning

Minimize
MI(r , ϕ)
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Image clustering
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How do we Google data?
■ How can we make data findable as soon as we collect it?
■ Concept: Change the data view and enforce their similarity.



Interpretable Machine Learning at the EuXFEL Danilo Ferreira de Lima et al (EuXFEL) March 2024 18

Creating a similarity metric
■ Equivalent views → variations

to ignore, based on the
science ⇒ context-aware.

yyyA

yyyA′

yyyB

yyyB′

z⃗A = f (yyyA)

z⃗A′ = f (yyyA′)

z⃗B = f (yyyB)

z⃗B′ = f (yyyB′)

f (·)

≈≈≈

≈≈≈
In Automated phase transition discovery : Sun, Y., Brockhauser, S.,

Hegedüs, P. , Plückthun, C., Gelisio, L., Ferreira de Lima, D. E., Sci.

Rep., (2023).

Similar ⇒

Similar ⇒

Similar ⇒

Similar ⇒

Similar ⇒

Example
⇓
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Predictive Maintenance
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Predictive Maintenance: ion vacuum pump use-case

■ Faults may lead to loss of beam time.
■ Important to detect them early.
■ Difficulty: complex system makes it

hard for humans to monitor everything.
■ Example: Ion pump faults have lead to

significant downtime.
■ Detection mechanism: frequent surges

in pressure level.

(Amna Majid)



Interpretable Machine Learning at the EuXFEL Danilo Ferreira de Lima et al (EuXFEL) March 2024 21

How can we detect it?

Sensor
readings

Feature
extraction SVM

CNN

Method Accuracy [%] Precision Recall
SVM 99.98 1.00 0.96
CNN 99.95 0.99 0.99

(Amna Majid)

■ Two methods researched with similar
performance.

■ SVM makes a linear cut in the feature
space of peak characteristics → easy
interpretation and based on context.

■ CNN uses all information.
■ Prefer interpretable method!
■ Web interface for monitoring ⇒ quality

control.
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Summary

■ Several approaches to enhance automation at the EuXFEL.
■ Interpretability, context-awareness and quality control are seen as assets to

guide towards adequate solutions.
■ Control system allows for integration and deployable methods.

■ Interface design is simple, but highlights those characteristics to guide users.
■ Aim for a holistic approach to integrate those features in all applications.
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Thank you!
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Additional material
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Interpretability in a Web interface
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Multi-modular geometry tuning: concept

Bkg. sub. Polar coord.
Minimize
MI(r , ϕ)

Optimize
detector

distance and
photon energy

Update inter-module distances
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Googling phase transitions

■ Ignore all changes in the spectra, but
phase transitions.

■ Learn to map irrelevant variations
into the same z⃗.

Sun, Y., Brockhauser, S., Hegedüs, P. , Plückthun, C., Gelisio, L., Ferreira de Lima,

D.E., Sci. Rep., (2023).
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Protecting detectors from damage

■ Ice can form on the tip of nozzles, and scatter X-rays that can destroy
detector pixels.

■ Idea: Use computer vision techniques to detect:

■ jet instabilities, reducing beamtimes efficiency;
■ ice formation.

■ Information can be used to alert operators or even intervene.
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Protecting detectors from damage

Experiment’s side camera.

Two consecutive frames
are separated by 0.1 s.
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Software deployed

Standard operation Ice detected

■ Ice formation may lead to detector damage. Human monitoring slow.
■ Interpretability: Interface informs on alarm source and low-quality data.
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Drive control system responsibly

■ Ice formation may lead to detector
damage. Human monitoring slow.

■ Interpretability: Interface informs on
alarm source and low-quality data.

■ Operators are still in control: we only
guide them on request.
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Baysian Optimization: How does it work?
Initially run analysis (×n) and store:

Parameter Objective

x⃗1 f (⃗x1,D(t = 1))
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Parameter Objective

x⃗1 f (⃗x1,D(t = 1))

.

.
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.

.
x⃗n+1 f (⃗xn+1,D(t = 2))

...

Dynamic Bayesian optimization.

■ A Gaussian process is used to fit the objective function f

C(x⃗1, t1, x⃗2, t2|S, L⃗,T , σ) = S2 e−
(⃗x1−x⃗2)

2

2 L⃗2 e−
(t1−t2)

2

2 T2 + σ2

■ The acquisition function is defined as

A(x⃗) = f̄ (x⃗ , t = current) +
√

β δf (x⃗ , t = current)
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Bayesian Optimization: Simulating a detector shift
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■ Hen Egg-White (HEW) Lysozyme.

■ Simulated AGIPD data, X-ray beam pointing shifting twice.
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Enforce self-consistency mapping
Idea: different views of the data containing the same information must be understood as
the same.

yyyA

yyyA′

yyyB

yyyB′

z⃗A = f (yyyA)

z⃗A′ = f (yyyA′)

z⃗B = f (yyyB)

z⃗B′ = f (yyyB′)

f (·) z0

z1

zA zA′

zB

zB′
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