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Why use Bayesian Optimization?
Sample-efficiency: objectives are commonly expensive to evaluate at particle accelerators
Flexibility and ease of use: successful applications at several facilities
Possibility to include prior information: p(A|B) ∝ p(B|A) p(A)
Often some prior knowledge is available, but not used: beam dynamics principles, historical data,
physics simulations, data from previous optimization runs etc.
Large amounts of prior data are difficult to incorporate directly into GPs
Convergence time can be a major limitation for high dimensional problems

How to make use of the available information?
Prior mean models can improve sample-efficiency⇒ scale to higher dimensions
NNs are flexible and scale well with the size of the available training data set

⇒ Combine sample-efficiency of BO with computational scaling of NNs!
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Motivation



Posterior mean for standard BO1:

µ∗ = K(X∗, X)[K(X, X) + σ2
ϵ I]

−1y

Non-constant prior adds extra term1:

µ∗ = m(X∗) + K(X∗, X)[K(X, X) + σ2
ϵ I]

−1(y − m(X))

⇒ GP model is trained to predict the difference to the prior mean function m(X∗)

⇒ Beneficial if the difference is small and/or easier to learn
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1C.E. Rasmussen and C.K.I. Williams, MIT Press (2006)

Preliminaries



Posterior reverts to prior mean in the absence
of local data

Inaccurate predictions are updated with avail-
able data samples

Good prior mean functions lead to better model
predictions if no local data is available
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Non-Constant Prior Mean Functions



LCLS Injector Surrogate Model:

9 layer NN trained on simulation data generated
with IMPACT-T

Minimize beam size of a round beam:

fLCLS(x) =
√
σ2
x + σ2

y + |σx − σy|

Using a perfect prior mean model, the optimiza-
tion problem is solved within a few steps
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BO with NN Prior Mean Model



NN models are commonly trained on absolute
error metrics like MSE/MAE

Low MSE/MAE may not translate to good pre-
dictions in the context of BO (a)

Correlation can be a better metric as it captures
the shape of the function (b)

⇒ Use combination of correlation and MAE to
describe the model

⇒ Ideal metric remains an open question
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Metrics for Prior Mean Models



Trained models with different levels of accuracy
to test impact on BO

Models with strong correlation improve initial
performance and lead to better convergence

Low or negative correlation can reduce perfor-
mance below standard BO

⇒ Initial performance can be improved significantly

⇒ Better models lead to better performance
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Simulations with LCLS Injector Surrogate Model



Prior mean model consistently leads to better
initial performance

BO with constant prior mean eventually con-
verges to better values

⇒ Probably due to the low model correlation

Model calibration with additional linear layers
for inputs and outputs
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Experimental Results at LCLS



Optimize beam transmission while preserving
overall beam quality

Trained NN model on 3k samples from a previ-
ous experiment with a 14N beam

BO with NN prior model to optimize transmis-
sion for 16O beam

⇒ Successful transfer learning!
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Experimental Results at ATLAS



Trained models with different levels of accuracy
to test impact on BO

Experimental results also show BO perfor-
mance depends on model quality

⇒ Performance with the same model can vary
depending on which parts of the domain are
sampled during a run
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Experimental Results at ATLAS



Obtaining models with high accuracy can be
challenging in practice

Convergence can suffer under the biased search
with an inaccurate prior mean model

Improve robustness by weighting NN model
against a constant prior mean:

m′(x) = wm(x) + (1− w) const.

⇒ “Flatten” prior mean as more steps are taken

Weighting based on correlation:

w = clip(r − w0, 0, 1)

⇒ Standard BO performance can be recovered
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Low-Quality Prior Mean Models



NN priors are a flexible way to incorporate prior knowledge from different sources

⇒ Enables incorporating large data sets into GPs

Prior mean models can improve BO performance dramatically

⇒ Successful demonstration at LCLS injector
⇒ Successful demonstration at ATLAS (including transfer learning across different beam types!)

Model accuracy and calibration are crucial (see Eric’s talk on Friday!)

Performance can be recovered if model quality is low

Outlook
Application to constrained optimization

Improved sample-efficiency allows scaling BO to high-dimensional problems
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https://arxiv.org/abs/2403.03225

Summary

https://arxiv.org/abs/2403.03225


Questions?
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Appendix



Calibration approach: linear transformation of individual inputs and outputs

y′ = yscale model(xscale x+ xoffset) + yoffset

Linear approach helps to retain interpretability

Regularization helps to get conservative estimates of the calibration parameters

Model Correlation r1 MAE (mm)1

uncalibrated 0.56± 0.37 1.00± 0.31
low reg. (w = 10−4)2 0.29± 0.18 2.13± 0.90
medium reg. (w = 10−3)3 0.35± 0.21 0.54± 0.24
high reg. (w = 10−2)2 0.20± 0.19 0.78± 0.27
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3trained on larger set of archived data with 36k samples

2trained on 834 samples from previous BO runs

1evaluated on 385 samples from different BO runs

Calibration of LCLS Injector Model
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