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Motivation

Why use Bayesian Optimization?
* Sample-efficiency: objectives are commonly expensive to evaluate at particle accelerators
* Flexibility and ease of use: successful applications at several facilities
e Possibility to include prior information: p(A|B) [o'e p(B|A) p(A)
* Often some prior knowledge is available, but not used: beam dynamics principles, historical data,
physics simulations, data from previous optimization runs etc.
* Large amounts of prior data are difficult to incorporate directly into GPs
* Convergence time can be a major limitation for high dimensional problems

How to make use of the available information?
* Prior mean models can improve sample-efficiency = scale to higher dimensions

* NNs are flexible and scale well with the size of the available training data set

=> Combine sample-efficiency of BO with computational scaling of NNs!
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Preliminaries

Test Point
Surrogate Model =3 Acquisition Function =3 Acq. Optimizati %

+ Observation Data |

* Posterior mean for standard BO®:
o = KO XIKOGX) + 02y
* Non-constant prior adds extra term®:
B, = m(X.) + KO, X)KOGX) + 027 (y — m(x))
=> GP model is trained to predict the difference to the prior mean function m(X*)

=> Beneficial if the difference is small and/or easier to learn

1C.E. Rasmussen and C.K.I. Williams, MIT Press (2006)
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Non-Constant Prior Mean Functions
(a)
=== Model
== = Prior mean
2 . = = Ground truth
* Posterior reverts to prior mean in the absence o Dat=
of local data T 0
* Inaccurate predictions are updated with avail- —27
able data samples (b)
* Good prior mean functions lead to better model
predictions if no local data is available . 01
_2 -
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BO with NN Prior Mean Model

e LCLS Injector Surrogate Model:
9 layer NN trained on simulation data generated

with IMPACT-T

* Minimize beam size of a round beam:

fias(x) = (/07 + 0F + |ox — 0]

* Using a perfect prior mean model, the optimiza-
tion problem is solved within a few steps

sLA@ Machine Learning Initiative

fics (Mmm)

Spectrometer

Y

Laser-Heater

Emittance

. N Screens/Wires
. RF AL~ OTR2
——————— " Deflector \:

= = Constant Prior
—— Perfect NN Model




Metrics for Prior Mean Models

* NN models are commonly trained on absolute
error metrics like MSE/MAE

* Low MSE/MAE may not translate to good pre-
dictions in the context of BO (a)

¢ Correlation can be a better metric as it captures
the shape of the function (b)

=> Use combination of correlation and MAE to
describe the model

=> ldeal metric remains an open question
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Simulations with LCLS Injector Surrogate Model
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* Trained models with different levels of accuracy E 41
1%}
to test impact on BO g 3
el
9 o | — mN.r=-0.1, MAE=1.5mm
* Models with strong correlation improve initial 3 — NN, r= 0.4, MAE=12mm
po) = NN, r= 0.7, MAE=0.6 mm
performance and lead to better convergence & 14— NN.r= 1.0, MAE=0.0mm
= Ground truth
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* Low or negative correlation can reduce perfor- Solenoid (kGm)

mance below standard BO

== Constant Prior
= NN, r=-0.1, MAE=1.5mm
NN, r= 0.4, MAE=1.2mm

=> Initial performance can be improved significantly 2 — NN, r= 0.7, MAE=0.6mm
IS — NN, r= 1.0, MAE=0.0mm
£
= Better models lead to better performance <
91
L=
0 o
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Experimental Results at LCLS

* Prior mean model consistently leads to better -
= = Constant Prior

initial performance —— NN, r=0.3, MAE = 0.3mm

¢ BO with constant prior mean eventually con-
verges to better values

ficts (mm)

=> Probably due to the low model correlation

* Model calibration with additional linear layers , : . . :

for inputs and outputs
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Experimental Results at ATLAS

¢ Optimize beam transmission while preserving
overall beam quality

* Trained NN model on 3k samples from a previ-
ous experiment with a **N beam

* BO with NN prior model to optimize transmis-
sion for O beam

=> Successful transfer learning!

Transmission (%)
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Experimental Results at ATLAS

* Trained models with different levels of accuracy == Constant Prior
. === NN, r=-0.2+0.5, MAE=0.4 £ 0.0
to test impact on BO —— NN, r= 01202, MAE=0.3+0.1

—— NN, r= 0.9%0.1, MAE=0.1+0.0
100

* Experimental results also show BO perfor-
mance depends on model quality

= Performance with the same model can vary
depending on which parts of the domain are
sampled during a run

Transmission (%)
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Low-Quality Prior Mean Models

wn
¢

Obtaining models with high accuracy can be

challenging in practice

Convergence can suffer under the biased search

with an inaccurate prior mean model

Improve robustness by weighting NN model

against a constant prior mean:

m'(x) = wm(x) + (1 — w) const.

= “Flatten” prior mean as more steps are taken

Weighting based on correlation:

w = cIip(r — W, 0, 1)

=> Standard BO performance can be recovered
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Summary

* NN priors are a flexible way to incorporate prior knowledge from different sources
= Enables incorporating large data sets into GPs
* Prior mean models can improve BO performance dramatically

=> Successful demonstration at LCLS injector
=> Successful demonstration at ATLAS (including transfer learning across different beam types!)

¢ Model accuracy and calibration are crucial (see Eric’s talk on Friday!)

¢ Performance can be recovered if model quality is low

QOutlook
¢ Application to constrained optimization

* Improved sample-efficiency allows scaling BO to high-dimensional problems

https://arxiv.org/abs/2403.03225
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Questions?
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Calibration of LCLS Injector Model

* Calibration approach: linear transformation of individual inputs and outputs

yl = Yscale mOdeI(XscaIe X + Xoffset) + Yoffset
 Linear approach helps to retain interpretability

* Regularization helps to get conservative estimates of the calibration parameters

Model Correlation r' MAE (mm)* ‘
uncalibrated 0.56 £0.37 1.00 +0.31 Eg Facinie Bounci
low reg. (w = 10™%)? 0.29 +0.18 2.13 £+ 0.90 ISIS Neutron and
medium reg. (W - 1073)3 0.35 :t 0.21 0.54 :l: 0.24 Levaluated on 385 samples from different BO runs
high reg. w = 1072)2 0.20 + 0.19 0.78 + 0.27 2trained on 834 samples from previous BO runs

Strained on larger set of archived data with 36k samples
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