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Background & motivation

The value of noise reduction in industrial applications
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Motivation

• Industrial vs. research operations

◦ Less controlled environments

◦ Mass-produced equipment

◦ Noisier electronic (e.g. RF) systems

• Growing demand for finely-tuned controls

◦ Highly targeted radiotherapy

◦ Sterilization (medical, agricultural, etc.)

• Promising solutions via machine learning (ML)
◦ Noise reduction & controls

PHASER flash radiotherapy system
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Industrial Application Areas

Security & Defense

Directed energy 
testing

Single effects

Medical Therapies

Proton therapy

Electron therapy

X-ray therapy

Imaging

Electron 
microscopy

𝛾-ray sources

X-ray sources

All rapidly increasing in complexity

• High-energy multi-cavity designs

• Distributed RF generation

Manufacturing

Polymer treatment

Industrial curing

Ion implantation

Welding

Sterilization

Medical devices

Food & water

Waste water
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Noise reduction approach

Noise analysis & methods for removal
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Noise Reduction Overview

• Noise analysis techniques

◦ Noise power spectra

◦ Integrated noise statistics

• Analytic approaches

◦ Shifting Gaussian smoothing window

◦ Standard Kalman filter

• ML approaches

◦ Standard & variational autoencoders (AE & RAE)

◦ Convolutional autoencoder (CAE)

◦ Variational recurrent autoencoder (VRAE)
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Noise Analysis

• Original 𝑋!  & noisy 𝑋  state data available via simulation

◦ Predict noiseless states ( "𝑋 ≈ 𝑋!) from noisy data

𝑋 𝑡 = 𝑋! 𝑡 + 𝑤", "𝑋 𝑡 = 𝑓 𝑋 , 𝑁 𝑡 = "𝑋 − 𝑋!, 𝑤"~𝒩 0, 𝜎#

• Noise error power spectra & integrated noise

𝑁 𝜔 = 3𝑁 𝑡 𝑒$%&"	𝑑𝑡 , 𝑁%'" 𝜔 = 3
!

&

𝑁 𝜔( 	𝑑𝜔(

• Average integrated noise

◦ Used for computing statistics over sample sets

7𝑁%'" = 3𝑁 𝜔 	𝑑𝜔 (for ONE sample set)
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Kalman Filtering

• Dynamical estimation technique

◦ Linear state & measurement dynamics (for standard KF)

§ 𝒙!"# = 𝐹𝒙! + 𝐺𝒖𝒕 +𝒘!

§ 𝒚! = 𝐻𝒙! +𝑀𝒖! + 𝒗!

◦ Predict true states from noisy measurements

• A priori updates follow known dynamics

◦ State estimate:  "𝒙!" = 𝐹"𝒙!"#$ + 𝐺𝒖!"#
◦ Error covariance:  𝑃!" = 𝐹𝑃!"#$ 𝐹% + 𝑄

◦ Information (Kalman) gain: 𝐾! = 𝑃!"𝐻% 𝐻𝑃!"𝐻% + 𝑅 "#

• A posteriori updates follow Bayes’ rule

◦ State estimate:  "𝒙!$ = "𝒙!" + 𝐾! 𝒚! − 𝐻"𝒙!"

◦ Estimation error covariance: 𝑃!$ = 𝐼 − 𝐾!𝐻 𝑃!"

𝒙& =
Re 𝑉&
Im 𝑉&

, 𝒖& =
Re 𝐼'()
Im 𝐼'()

, 𝒚& =

Re 𝑉&
Im 𝑉&
Re 𝑉*
Im 𝑉*

𝐹 =
−𝜔 ⁄# , −Δ𝜔
Δ𝜔 −𝜔 ⁄# ,

, 𝐺 =
𝑅-𝜔 ⁄# ,
𝑚

1 0
0 1

𝐻 =

1 0
0 1
⁄1 𝑚 0
0 ⁄1 𝑚

, 𝑀 = −
𝑍.
2

0 0
0 0
1 0
0 1

RF State, Controls, & Measurements

RF Dynamics Matrices
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Convolutional Autoencoders

• Convolutions condense 1D sequences into latent vectors

◦ Filters learn translation-invariant features (similar to UNet)

◦ Pooling layers for down-sampling

◦ Transpose convolutions for up-sampling

• Parameterized architecture

◦ Latent dimension

◦ Number of filters per convolution

◦ Convolutional kernel sizes

Contraction
Extract features from sequence

Expansion
Expand features into sequenceDense Layers

1D Convolutions

Max Pooling
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Up-Convolution

D
enoised Sequence

Flatten Reshape
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Variational Autoencoders

• Condenses/expands 1D sequences into/from stochastic latent space

◦ Encoder/decoder can be deep neural-network (DNNs), LSTM cells, etc.

◦ Latent space distribution given by mean vector & covariance diagonals

◦ KL divergence loss enforces smooth latent distributions

• Attractive option for denoising RF signals

◦ Previous success on BPM data

◦ Another reason

Reconstruction Loss

𝐿*/012 = 𝑿 − "𝑿 ,

KL Divergence Loss

𝐿3- =&
4

𝜎4, + 𝜇4, − log 𝜎4 −
1
2

(Assuming 𝑝~𝒩 𝝁, 𝜮 )

𝑿 𝑡

𝑝 𝒛

𝝁

𝝈

𝒛~𝒩 𝝁, 𝚺 +𝑿 𝑡

𝝈 ≡ diag 𝚺

Condense sequence Expand sampleSample latent space
(”Reparameterization Trick”)

DecoderEncoder
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Results & discussion

Denoised signals & integrated noise statistics
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Denoised Signals

Kalman Filter Convolutional Autoencoder Variational Recurrent Autoencoder
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Noise Power Analysis

Single example with median 𝑁!"#  
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Integrated Noise Statistics
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Integrated Noise & Hyperparameter Tuning (CAE)
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Discussion

• All approaches achieved noise reduction

◦ Signal reconstruction with errors inside noise bounds

• “Best” result depends on requirements of application

◦ KF: worst mean, median, & minimum noise, but best maximum noise

◦ VRAE: best mean, median & minimum noise, but worst maximum noise

◦ CNN: similarly good mean & median to VRAE, lower maximum noise

• Hyperparameter tuning via noise statistics continues

◦ Tuning for additional models (other than CAE)

◦ Automated hyperparameter scans
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Government Disclaimer

This report was prepared as an account of work sponsored by an agency of the United 

States Government.  Neither the United States Government nor any agency thereof, nor 

any of their employees, makes any warranty, express or implied, or assumes any legal liability 

or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned 

rights.  Reference herein to any specific commercial product, process, or service by trade 

name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 

endorsement, recommendation, or favoring by the United States Government or any agency 

thereof.  The views and opinions of authors expressed herein do not necessarily state or 

reflect those of the United States Government or any agency thereof.


