Al-assisted design of Muon Collider **Final Cooling Channel**

Elena Fol CERN, Beams Department- Accelerator Beam Physics Group

ICFA Workshop on ML for Accelerators 5-8 March 2024

Outline

- Muon Collider overview
- Concept and challenges of Final Cooling
- Lattice design optimization using ML
 - Surrogate models
 - Feature Importance Analysis with Decision Trees
 - Bayesian Optimization
 - Clustering and anomaly detection
- Current results
- Summary

produces **pions**

cooled to lower emittance

→ decay into muons

https://muoncollider.web.cern.ch

Muon Collider: overview

https://muoncollider.web.cern.ch

Parameter	Unit	3 TeV	10 TeV	14	
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	4	
Ν	10 ¹²	2.2	1.8	1	
f _r	Hz	5	5		
P _{beam}	MW	5.3	14.4	2	
С	km	4.5	10	1	
	Т	7	10.5	10	
ε	MeV m	7.5	7.5	7	
σ _E / Ε	%	0.1	0.1	0	
σΖ	mm	5	1.5	1.	
β	mm	5	1.5	1.	
3	μm	25	25	2	
σ _{x,v}	μm	3.0	0.9	0.	

Muon Collider: overview

- **Ionisation cooling** (the reduction of occupied phase-space by muons): the only technique compatible with muon's lifetime **(2.2 μs)**, demonstrated by <u>MICE collaboration</u>
- **Final Cooling Channel:** reduction of transverse emittance on the cost of longitudinal emittance growth

https://muoncollider.web.cern.ch

	Parameter	Unit	3 TeV	10 TeV	14	
	L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	4	
	Ν	10 ¹²	2.2	1.8	1	
	f _r	Hz	5	5		
	P _{beam}	MW	5.3	14.4	2	
	С	km	4.5	10	1	
<Β> ε _L		Т	7	10.5	10	
		MeV m	7.5	7.5	7	
	σ _E / Ε	%	0.1	0.1	0	
σ _z β		mm	5	1.5	1.	
		mm	5	1.5	1.	
	ε	μm	25	25	2	
σ _{x,y}		μm	3.0	0.9	0.	

Technology and challenges of Final Cooling

Ionisation cooling: the only technique that works on the **timescale of the muon lifetime**

- Muons passing through a material -> energy loss due to the interaction with absorber material
- Reduction of normalised beam emittance
- Re-accelerating the beam to restore the longitudinal momentum

(cooling)

$$\frac{\varepsilon}{s}\varepsilon_T + \frac{\beta\gamma\beta_T}{2}\frac{d\theta_0^2}{ds}$$

(heating)

Challenges and objectives of Final Cooling

Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer Phys. Rev. ST Accel. Beams **18**, 091001 – Published 4 September 2015

Challenges and objectives of Final Cooling

Lowering transverse emittance on the costs of :

- Longitudinal emittance growth
- Bunch length increasing: challenging RF set-up
- Energy spread
- Particle losses due to decays and energy loss

- Achieved in previous studies*: $\epsilon_{\perp} = 55 \mu m$, with $\epsilon_{\parallel} = 76 \, \text{mm}$, transmission 50%
- •Target is $\epsilon_{\perp} = 25 \mu m =>$ to be achieved using higher solenoid field, optimization

Challenges and objectives of Final Cooling

Lowering transverse emittance on the costs of :

- Longitudinal emittance growth
- Bunch length increasing: challenging RF set-up
- Energy spread
- Particle losses due to decays and energy loss

- Achieved in previous studies*: $\varepsilon_{\perp} = 55 \mu m$, with $\varepsilon_{\parallel} = 76 \, \text{mm}$, transmission 50%
- •Target is $\epsilon_{\perp} = 25 \mu m =>$ to be achieved using higher solenoid field, optimization
 - How to speed up simulations-based design opti
 - How to estimate initial optimization parameter
 - Robust emittance estimation during optimization

imization?	 Surrogate models Feature Importance Analysis with Decision Trees
rs ? on?	 Bayesian Optimization Clustering and anomaly detection

Final Cooling: Optimization Strategy

- Global optimization:
 - would have **14 parameters** to optimize in each cell
- Expected to need ~16 cells in total
- Step-by-step approach, testing different optimization algorithms

Final Cooling: Optimization Strategy

I. Estimate optimal momenta and absorber lengths in every cell, with objective $\epsilon_{\perp} = 25 \mu m$.

Nelder – Mead Using cooling equations* as objective function and matching coils

- Numerical optimization, simulations - Surrogate model (Decision-tree based)

III. Optimize acceleration and rotation of the bunch after absorber (simplified RF model)

IV. Optimize a realistic RF system: frequencies, phases, gradients to control the longitudinal dynamics

Bayesian Optimization, BOBYQA

Clustering for robust emittance estimation

* D. Neuffer, Introduction to muon cooling, Nucl. Instrum. Methods Phys. Res., Sect. A 532, 26 (2004).

II. **Optics control**, ensure low beta-function in absorber by **optimizing solenoid field**

- Global optimization: would have **14 parameters** to optimize
 - in each cell
- Expected to need ~16 cells in total
- Step-by-step approach, testing different optimization algorithms

Initial beam momenta and absorber thickness

I. Estimate optimal momenta and absorber lengths in every cell,

with objective $\epsilon_{\perp} = 25 \mu m$.

- $\frac{d\epsilon_{\perp}}{ds} = -\frac{\epsilon_{\perp}}{\beta^2 E} \frac{dE}{ds} + \frac{\beta_{\perp} E_s^2}{2\beta^3 m c^2 L_R E}$ → Provides **starting momenta** and **absorber** lengths for all cells $\frac{dE}{ds} = 4\pi N_A \rho r_e^2 m_e c^2 \frac{Z}{A} \left[\frac{1}{\beta^2} \ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I(Z)} \right) - 1 - \frac{\delta}{2\beta^2} \right]$
- 40 T, Liquid hydrogen absorber, initial beam: $P_z = 135 MeV/c, \epsilon_{\perp} = 300 \mu m, \epsilon_{\parallel} = 1.5 mm, \sigma t = 50 mm, \sigma E = 3.2 MeV$

Cell	$P_z [{\rm MeV/c}]$	Absorber [cm]	$\epsilon_{\perp,start}[\mu m]$	$\epsilon_{\perp,end}$	$P_{z,enc}$
14	65	14	40	24.5	10
13	70	15	50	40	55.5
12	76	13	70	50	40
11	75	15	85	70	53.5
10	89.2	22	100	85	67.5
9	92.6	21	115	100	74
8	110	25	125	114.6	93.6
7	115	34	140	124.7	93.4
6	124.5	37	155	140	103.4
5	120	36	175	155	98.5
4	127.5	43	200	175	102.4
3	130	40	225	200	108.5
2	125	45	260	220	99
1	135	55	300	250	106

- Note: this assumes *ideal optics matching and* <u>control of longitudinal parameters</u>
- Transmission is not included

Initial beam momenta and absorber thickness

I. Estimate optimal momenta and absorber lengths in every cell,

with objective $\epsilon_{\perp} = 25 \mu m$.

- 40 T, Liquid hydrogen absorber, initial beam: $P_z = 135 MeV/c, \epsilon_{\perp} = 300 \mu m, \epsilon_{\parallel} = 1.5 mm, \sigma t = 50 mm, \sigma E = 3.2 MeV$

Cell	$P_z [{\rm MeV/c}]$	Absorber [cm]	$\epsilon_{\perp,start}[\mu m]$	$\epsilon_{\perp,end}$	$P_{z,enc}$
14	65	14	40	24.5	10
13	70	15	50	40	55.5
12	76	13	70	50	40
11	75	15	85	70	53.5
10	89.2	22	100	85	67.5
9	92.6	21	115	100	74
8	110	25	125	114.6	93.6
7	115	34	140	124.7	93.4
6	124.5	37	155	140	103.4
5	120	36	175	155	98.5
4	127.5	43	200	175	102.4
3	130	40	225	200	108.5
2	125	45	260	220	99
1	135	55	300	250	106

Optics matching

→ Mitigates emittance blow up in the fridge fields and controls the optics in absorber region

- Optimization parameters:
 - solenoid length,
 - Strength of the low B-field between the cells
- Matching coils placed left and right from the absorber
- Method: **BOBYQA** : fast-executable, gradient-free

Coralia Cartis, Jan Fiala, Benjamin Marteau and Lindon Roberts, Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers, ACM Transactions on Mathematical Software, 45:3 (2019), pp. 32:1-32:41

14

Optimizing solenoid fields: Surrogate Modeling

Proof of concept:

- 1. Run numerical optimisers, systematically saving the data (results of tracking simulations using ICOOL)
- 2. Train a surrogate model (Random Forest Regressor):
- input = parameters of the solenoid field in a cooling cell
- output = optics observables

3. **Replace time-costly simulations** with ML model, find optimal parameters

Longitudinal phase-space optimization: Bayesian Optimization

obtained using RF-Track simulation code

developed by A. Latina <u>https://gitlab.cern.ch/rf-track</u>)

Example for cell 1: Absorber thickness: 0.85 m Solenoid length = 1.48 m

Solenoid field in RF-Track:

obtained using RF-Track simulation code

developed by A. Latina https://gitlab.cern.ch/rf-track)

Free parameters:

- Absorber (liquid hydrogen) thickness
- Drift length
- Number of accelerating RF cavities, rf phase
- Number of rotating RF cavities, rf phase
- B-field in RF region to match the field in the cooling cell and the change in momentum

Optimization procedure:

- Run optimization for each cell, a few iterations -
- Create a surrogate model to estimate the initial parameters -
- Bayesian Optimization*, BOBYQA -
- * Update probabilistic model based on function evaluation
- Optimise an acquisition function (e.g. expected improvement) for sampling the new optimisation step
- Balance exploration and exploitation by controlling parameters of acquisition function
- Surrogate Model: Random Forest
- Skopt implementation (<u>https://scikit-optimize.github.io</u>)

- Optimization procedure:
- Run optimization for a cell, a few iterations => increase exploration rate to create a diverse dataset
- Create a surrogate model from valid simulation set-ups to estimate the initial parameters
- Update initial parameters in optimiser => decrease the exploration rate: look for solutions around (suboptimal) SM prediction

Desired cooling performance

- **Required beam** parameters and cell design
- Input: $\epsilon_{\perp start}, P_{z, start}, \epsilon_{\perp}, \sigma_t, \sigma E, N_{\mu}$
- Output: $L_{drift}, N_{rot}, N_{cav}, \phi_{RF}, L_{absorber}, L_{sol}$
- Train/Test R2: 0.97 / 0.9 (~5000 samples)

XGBoost:

- Extreme **Gradient boosting** = ensemble ML algorithms based on decision tree models
- Trees are added one at a time to the ensemble => Fit to correct the prediction errors made by prior models => Using Gradient Descent
- => Combing "weak learners" into a single strong learner iteratively

Greedy Function Approximation: A Gradient Boosting Machine, Friedman https://github.com/tqchen/xgboost

- Optimization procedure:
- Run optimization for a cell, a few iterations -=> increase exploration rate to create a diverse dataset
- Create a surrogate model from valid simulation set-ups to estimate the initial parameters
- Update initial parameters in optimiser
- => decrease the exploration rate: look for solutions around (sub-

optimal) SM prediction

Wang, Mao-Xin et. al(2020). SS-XGBoost: A Machine Learning Framework for Predicting Newmark Sliding Displacements of Slopes.

Desired cooling performance

Required beam parameters and cell design

- Input: $\epsilon_{\perp start}, P_{z, start}, \epsilon_{\perp}, \sigma_t, \sigma E, N_{\mu}$ ►
- Output: $L_{drift}, N_{rot}, N_{cav}, \phi_{RF}, L_{absorber}, L_{sol}$ ►
- Train/Test R2: 0.97 / 0.9 (~5000 samples)

Example, cell 4: $\epsilon_{\perp,start} = 170 \mu m$

Training on the full data set, collected from cell 1-12, ~5000 samples

Target:

$$\epsilon_{\perp} = 150 \mu m, \sigma_t = 400 mm, \sigma E = 2.0 MeV, N_{\mu} = 75 \%$$

- Optimization procedure:
- Run optimization for a cell, a few iterations -=> increase exploration rate to create a diverse dataset
- Create a surrogate model **from valid simulation set-ups** to estimate the initial parameters
- Update initial parameters in optimiser => decrease the exploration rate: look for solutions around (suboptimal) SM prediction

Desired cooling performance

Required beam parameters and cell design

- Input: $\epsilon_{\perp start}, P_{z, start}, \epsilon_{\perp}, \sigma_t, \sigma E, N_{\mu}$ ►
- Output: $L_{drift}, N_{rot}, N_{cav}, \phi_{RF}, L_{absorber}, L_{sol}$
- Train/Test R2: 0.97 / 0.9 (~5000 samples)

Example, cell 4: $\epsilon_{\perp,start} = 170 \mu m$

Training on the full data set, collected from cell 1-12, ~5000 samples

Target:

$$\epsilon_{\perp} = 150 \mu m, \sigma_t = 400 mm, \sigma E = 2.0 MeV, N_{\mu} = 75 \%$$

Simulated with parameters predicted by ML-model:

 $\epsilon_{\perp} = 149 \mu m, \sigma_t = 404 mm, \sigma E = 3.5 MeV, N_{\mu} = 69\%$

- Optimization procedure:
- Run optimization for a cell, a few iterations -=> increase exploration rate to create a diverse dataset
- Create a surrogate model **from valid simulation set-ups** to estimate the initial parameters
- Update initial parameters in optimiser => decrease the exploration rate: look for solutions around (suboptimal) SM prediction

Desired cooling performance

Required beam parameters and cell design

- Input: $\epsilon_{\perp start}, P_{z, start}, \epsilon_{\perp}, \sigma_t, \sigma E, N_{\mu}$ ►
- Output: L_{drift} , N_{rot} , N_{cav} , ϕ_{RF} , $L_{absorber}$, L_{sol}
- Train/Test R2: 0.97 / 0.9 (~5000 samples)

Example, cell 4: $\epsilon_{\perp,start} = 170 \mu m$

Training on the full data set, collected from cell 1-12, ► ~5000 samples

Target:

$$\epsilon_{\perp} = 150 \mu m, \sigma_t = 400 mm, \sigma E = 2.0 MeV, N_{\mu} = 75 \%$$

Simulated with parameters predicted by ML-model:

$$\epsilon_{\perp} = 149 \mu m, \sigma_t = 404 mm, \sigma E = 3.5 MeV, N_{\mu} = 69 \%$$

Optimiser, 150 steps, starting with predicted parameters:

$$\epsilon_{\perp} = 150 \mu m, \sigma_t = 280 mm, \sigma E = 2.1 MeV, N_{\mu} = 71 \%$$

- Optimization procedure:
- Run optimization for a cell, a few iterations => increase exploration rate to create a diverse dataset
- Create a surrogate model **from valid simulation set-ups** to estimate the initial parameters
- Update initial parameters in optimiser => decrease the exploration rate: look for solutions around (suboptimal) SM prediction

Desired cooling performance

Required beam parameters and cell design

- Input: $\epsilon_{\perp start}, P_{z, start}, \epsilon_{\perp}, \sigma_t, \sigma E, N_{\mu}$
- Output: $L_{drift}, N_{rot}, N_{cav}, \phi_{RF}, L_{absorber}, L_{sol}$
- Train/Test R2: 0.97 / 0.9 (~5000 samples)

Example, cell 4: $\epsilon_{\perp,start} = 170 \mu m$

Training on the full data set, collected from cell 1-12, ~5000 samples

Target:

$$\epsilon_{\perp} = 150 \mu m, \sigma_t = 400 mm, \sigma E = 2.0 MeV, N_{\mu} = 75 \%$$

Simulated with parameters predicted by ML-model:

$$\epsilon_{\perp} = 149 \mu m, \sigma_t = 404 mm, \sigma E = 3.5 MeV, N_{\mu} = 69 \%$$

Optimiser, 150 steps, starting with predicted parameters:

$$\epsilon_{\perp} = 150 \mu m, \sigma_t = 280 mm, \sigma E = 2.1 MeV, N_{\mu} = 71 \%$$

- Optimization procedure:
- Run optimization for a cell, a few iterations => increase exploration rate to create a diverse dataset
- Create a surrogate model **from valid simulation set-ups** to estimate the initial parameters
- Update initial parameters in optimiser => decrease the exploration rate: look for solutions around (suboptimal) SM prediction
- Training only on data, collected for the current cell Note: here $\epsilon_{\perp start}$, $P_{z,start}$ are not included, 320 samples Target:

$$\epsilon_{\perp} = 140 \mu m, \sigma_t = 400 mm, \sigma E = 2.0 MeV, N_{\mu} = 70 \%$$

<u>Simulated with parameters predicted by ML-model:</u>

$$\epsilon_{\perp} = 140 \mu m, \sigma_t = 600 mm, \sigma E = 3.4 MeV, N_{\mu} = 66 \%$$

24

Model interpretability: permutation features importance

Feature permutation

- Measuring how much model's performance decreases when each feature is randomly shuffled
- Identify which features have greatest impact on model's output

Example: optimization of RF in cooling cells:

Model created from optimization data: <u>Input</u>: **cell set up**, <u>output</u>: **beam parameters** at the end of a cooling cell

Final cooling optimization: robust emittance estimation

Objective function : $\frac{\epsilon_{\perp}\epsilon_{||}}{\epsilon_{\perp}}$

- Too high emittance can be caused by a few "outliers"
- Traditional "3 sigma-cut" not always reliable, especially towards the end of the channel
- Robust algorithm to exclude the outliers before evaluating the emittances?

after absorber and matching

after acceleration

rotation, L = 2.49287548 [m]

t [m]

= 12mm

50

 \mathcal{E}_{\parallel}

Final cooling optimization: robust emittance estimation

Objective function :
$$\frac{\epsilon_{\perp}\epsilon_{||}}{N_{\mu}}$$

- Too high emittance can be caused by a few "outliers"
- Traditional "3 sigma-cut" not always reliable, especially towards the end of the channel
- Robust algorithm to exclude the outliers before evaluating the emittances?
- Comparing anomaly detection techniques, density-based clustering
- **Unsupervised Learning (no data, no training needed), fast-executable**

Suitable methods for robust emittance estimation

Local Outlier Factor

+ outliers as points with significantly lower **density** compared to their neighbours + effective for **high-dimensional data sets**

- requires threshold specification

DBSCAN

+ separates regions based on the **density**, can identify **noise**

+ can handle clusters of **arbitrary shape and size**

- requires a threshold on minimum N samples and distance

Isolation Forest

- + specifically designed for **outliers detection**
- + robust, based on ensembles of decision trees
- requires expected outliers rate in the dataset
- **Minimum Covariance Determinant** + aims to find the **subset with the smallest** determinant of the covariance matrix => samples from the same distribution + no thresholds to be defined + direct output is "clean" 6D covariance matrix => rms properties of the particle distribution

Comparison of clustering techniques for emittance estimation

Example: cell 3

Example: cell 6

Cooling performance, full channel

Prelimi	nary	$\epsilon_{\perp}[\mu m]$	$\epsilon_{ }$ [mm]	N [%]
	3σ -cut	39	85	35
	IF	33	82	33
	MCD	35	80	38
	No cuts	46	106	42

Start-to-end FC channel: current results

Cell	LH_2	Drift	N_{RF}	N_{RF}	f_{RF}	G	$\phi_{RF,rot.}$]	$P_{z,start}$	σE_{start}	σt_{start}	$P_{z,end}$	σE_{end}	σt_{end}	$\epsilon_{ }$	ϵ_{\perp}	N
	[m]	[m]	rot.	accel.	[MHz]	[MV/m]	degrees		[MeV/m]	[MeV]	[mm]	[MeV/m]	[MeV]	[mm]	[mm]	$[\mu m]$	[%]
2	0.466	0.3238	5	5	111.06	19.81	-180]	145.0	3.2	50.0	100.0	4.3	125.2	2.1	221.2	95.5
3	0.46958	1.363	10	7	56.85	14.17	90		118.8	2.0	201.9	89.0	2.4	130.7	2.9	177.2	87.3
4	0.4	2.5	9	8	40.13	11.9	51		118.9	2.7	192.8	89.2	3.0	268.2	4.0	151.0	81.5
5	0.3	1.8358	7	2	34.91	11.11	-10		114.5	2.5	399.7	87.4	3.4	173.7	5.0	137.2	71.9
6	0.25	2.0	5	10	30.61	10.4	-54		92.9	2.9	209.5	62.0	4.4	592.6	9.2	109.9	65.6
7	0.3	0.084	5	14	11 637	6 823	-82		84.9	3.7	1625.8	57.4	1.6	911.6	13.1	93.2	56.3
	0.5	0.304	0	14	10.17	0.025	-02		89.8	1.5	916.6	55.2	2.7	926.9	22.3	69.3	52.5
8	0.1	3.6464	2	1	16.17	8.04	67		71.8	2.4	1354.7	57.7	2.9	1365.3	28.0	63.8	48.2
9	0.17	3.64	2	11	13.38	7.32	67		77.2	2.2	1774.2	53.5	3.1	1695.2	40.5	51.0	43.2
10	0.08	2.555	11	2	8.226	5.39	-6		61.5	1.8	2561.5	43.5	2.8	2398.1	59.3	42.2	39.0
11	0.0541	2.895	11	4	5.676	4.48	-96		60.5	2.2	3101.1	49.2	2.8	2954.3	77.3	37.2	36.4

compared to the baseline: (9 cells, $\epsilon_{\perp} = 40 \mu m$, ϵ_{\perp}

(16 cells, $\epsilon_{\perp} = 55 \mu m$, $\epsilon_{\perp} = 76 mm$)

Already after 9 cells better performance is achieved

$$_{L} = 51mm$$
)

Potential to improve the transmission by minimising the relative energy spread

Potential to combine with other cooling techniques

Summary

Muon Collider Design (Final Cooling Channel)

- Surrogate models for both, fast objective function evaluation and estimation of initial parameter
- **Bayesian Optimization** combining modelling and optimization
- Anomaly detection techniques for robust emittance analysis
- "Proof-of-concept": Opening several opportunities for accelerator design studies: identification of most critical parameters for collider performance (e.g. feature importance analysis, but also dimensionality reduction techniques)
- Start-to-end optimisation framework utilizing fast-executable methods for changing requirements as design evolves.

Practical Advice

- Start with **simpler models** they are **easier to tune and interpret**. Neural Networks are not always the perfect solution!
- Numerical Optimisers are powerful tools and can be made even more efficient using surrogate models - save and structure your data!
- Not all ML algorithms need large amount of data consider translating your problem as **Unsupervised Learning** task (e.g. anomaly detection)

Thanks a lot for your attention!

