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High Performance Accelerator Models Are Central to AI/ML Efforts

Roussel et. al. Nat. Comm. 2021

Efficient 
optimization and 
characterization

Output constraints learned on-the-fly

ground truth validity probability

Hanuka et. al. PRAB , 2021

Combining 
physics and ML, 

including differentiable 
simulators

Roussel et. al. PRL. 2022

Representation learning
 (e.g. better ways of modeling beams)

Online prediction with physics sims 
and fast/accurate ML models

Accelerator Models



Fast-Executing, Accurate System Models
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Accelerator simulations that include nonlinear and 
collective effects are powerful tools, but they can 

be computationally expensive
10 hours on 
thousands of 
cores at NERSC!



Model Calibration
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Model Calibration
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Unmeasured Quantities
-Photocathode Rec. Depth
-MTE

RF Scaling 
& Offset

Magnetic Scaling & Offset

Static Error Sources



Time-Varying Error Sources

Model Calibration
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Laser fluctuations
- Pointing jitter
- Intensity fluctuations

RF fluctuations
- Phase & Amplitude
- Amplifier drift Magnet fluctuations

- Current
- Residual magnetization



• Framing the problem

• Three examples:

o MCMC at HiRES (LBNL)

o Learning scaling factors & offsets at LCLS (SLAC)

o Ongoing FACET-II (SLAC) model calibration

• Outlook

Outline
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FACET-II (SLAC)

LCLS (SLAC)

HiRES (LBNL)



https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

8

The Inverse Problem for Model Calibration

arg min 𝑑𝑜𝑏𝑠 − 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 ) 1

• Zeroth order solution: parameter scan

• But with multiple dimensions, becomes untenable 

• Considerations: choosing an approach

• Model execution time/cost

• Model types

• Desired information

• Amount of data

Consider 

Applications!



• Full posterior probability distribution for optimization variables

• Generally slower than optimization

• Requires fast-executing model

Advantages & Disadvantages

Full Prob. Distributions: Markov Chain Monte Carlo (MCMC)
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Figures adapted from https://emcee.readthedocs.io/

• Initialize walkers and have them update based on probability of 
proposed move

• Goodman and Weare “stretch move” proposal [1] (with Metropolis-
Hastings [2] acceptance rule) 

• Markov chain: future step depends only on current step

[2] W. Hastings, Biometrika, 57: 97–109 (1970)
[1] J. Goodman and J. Weare, Communications in applied mathematics and computational science 5, 65 (2010)

𝑃 𝜃𝑀 𝐷 =
𝑃 𝐷 𝜃𝑀 𝑃(𝜃𝑀)

𝑃(𝐷)

𝑃(𝜃𝑀|𝐷) ∝ 𝑃 𝐷 𝜃𝑀 𝑃(𝜃𝑀)

Likelihood function

Prior probability
Posterior probability 
(probability of model 
parameters given data)

Probability of evidence (data): 
impractical to estimate



Example Problem and the Prescription

Example Problem
HiRES (LBNL) gun: matching beam dynamics (GPT) 
simulation to real data (using NN surrogate model)

Find the following parameters based on beam 
second order moments in solenoid scan:

• Cathode MTE

• Beam energy

• Solenoid quadrupole moment

• Solenoid skew quadrupole moment

• Cathode recession depth

The Prescription
• Run GPT in parallel for rough parameter scan

• Train NN surrogate model

• MCMC sampling of surrogate model to match 
model to data



Comparison with local optimization

Parameter Fmincon Value MCMC Mean MCMC Error

MTE (eV) 0.217 0.217 0.001

Field (MV/m) 19.233 19.233 0.002

Rec Depth (mm) 0.785 0.784 0.004

QCurr -0.784 -0.784 0.003

SQCurr -0.170 -0.171 0.003

Below: Plot of posterior 
distributions
Middle: Walker positions 
throughout scan
Right: Plot of simulated solenoid 
scan (with data for comparison)



LCLS Injector Calibration with a NN

• Trained neural network model on IMPACT-T 

• MOGA on the emittance and random sampling

• Freeze main representation, learn scaling and offset via back-propagation

• Linear approach: interpretability

• Fast way of identifying possible error sources simultaneously

• Similar to transfer learning, but interpretable 
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Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) 

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these  to get better understanding of machine performance 

àML model allows fast /  automatic exploration of error sources in high dimension
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First studies look promising à current/future work to investigate robustness and extend to larger subsystems + more complicated setups

injector
settings

laser image

adaptable calibration
transforms

longitudinal/
transverse phase space

Without 
calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

ML modeling enables rapid identification of error sources between idealized physics simulations and real machine
à path toward gaining new insights into machine performance (could also help inform future designs)

Example: calibration 
offset in injector 

solenoid strength found 

automatically with 

neural network model 

(trained first in 
simulation, then 

calibrated to machine)

frozen neural network 
layers trained on 
simulation



LCLS Example: Model Calibration for BO with NN Priors
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•Quality of the prior mean model is important to BO performance

•Need to account for all changes in parameters/inputs over time

•Number of required samples depends heavily on the data distribution

Recall Wednesday's talk from T. Boltz

T. Boltz et al. arXiv:2403.03225



Well-distributed data
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• Bayesian Exploration for efficient exploration:

• Time efficient

• Well-distributed data

• FACET-II: 2 hrs for 10 variables compared to 5 hrs 
for 4 variables with N-D parameter scan
  

• Data was used to train neural network model of 
injector response predicting x-y beam images. 

• GP ML model from exploration predicts emittance 
and match.

R. Roussel et al Nat Comm. 2021



In Progress: FACET-II Model Calibration

Second-Order Moments from
Solenoid Scan (Below)

Selected Images from 
Solenoid Scan (Right)

FACET-II & User Needs

• High charge beams --> plasma 

experiments

• Want start-to-end simulations so 

users can optimize their 

experiments

kG-m kG-m kG-m kG-m



FACET-II & Multifidelity Optimization
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N=
2e4

Number of Particles (N) 2e4 2e5 2e6

Space Charge Grid Size 16 32 64

Execution time ~1 min ~2.5 min ~25 min

σx (um) 1026 1018 1017

σy (um) 654 623 614

Norm x emit (um) 9.26 8.87 8.77

Recall Wednesday’s talk from R. Lehe

• Information theoretic approach to simulations

• Learn correlations between different model 
fidelities

• Use multi-fidelity Bayesian optimization to 
select model fidelity

Bayesian Exploration

N=
2e5

N=
2e6



Future: Full Integration of AI/ML Optimization, Modeling, 
and Physics Simulations
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Data 

processing

Data 

processing

FACET-II LCLS

Data 

processing

Data 

processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

• Ultimately, model calibration → full 
digital twin

• Infrastructure being built to these ends
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Part of a larger effort

Interoperable standards and tools for end-to-end 
accelerator simulations

Differentiable 
simulations, 
including Bmad

Model calibration for RHIC



Acknowledgements

19

Pietro Musumeci 
(UCLA)

Daniele Filippetto 
(LBNL)

Auralee Edelen 
(SLAC)

Ryan Roussel 
(SLAC)

Tobias Boltz 
(SLAC)

Kathryn Baker 
(ISIS)

Claudio Emma 
(SLAC)

Zihan Zhu 
(SLAC)

Dylan Kennedy 
(SLAC)

Daniel Ratner 
(SLAC)

Sanjeev Chauhan
(Duke U.)

Chris Mayes
(xLight, Inc./SLAC)

Juan Pablo Gonzalez-Aguilera
(U. Chicago)



Questions?
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