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ALS Triple-Bend Achromat Lattice
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2 nm.rad 
0.04 nm.rad
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14 vertical gaps (1 always fixed) + 7 EPUs with 2x horizontal offsets = 27 free parameters

Insertion Devices at the Advanced Light Source
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Electron Beam Stability at the Advanced Light Source
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• Beam Current: 
– Top-off operation keeps 

current variations below 1mA 
• Beam Position: 

– Orbit feedback and ID feed-
forwards stabilize source 
positions to sub-micron level 

• Beam Size: 
– ID skew quadrupole feed-

forwards stabilize source size 
– Requires lookup tables
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10%
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Typical User Operation At ALS

ver.@ BPM(10,2)
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• STXM Beamlines: 
– Widely used for nanoscale studies  
– Fast raster scanning 
– No averaging  
– ≈ 1 ms/pixel, 1 s/line, 6 min/scan 

• Current ID Feed Forward: 
– LOCO at various gaps to obtain (local) 

skew quadrupole corrector settings 
– Interpolation table used in FF 

correction 
– Takes one night to measure 
– Aging of tables results in large 

variation of vertical beam size 
• STXM Intensity Fluctuations: 

– Residual ID induced vertical beamsize 
variations biggest contributor 

– POC: Leemann et al., PRL 123,194801 SampleX-ray beam Fresnel zone 
plate Order sorting  

aperture

Sample

Photodiode

“Section of a ptychography 
reconstruction of 40nm and 
100nm gold nanoparticles on 
a silicon nitride membrane“ 

Scanning Transmission X-ray Microscopy at the Advanced Light Source 
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Scanning Transmission X-ray Microscopy at the Advanced Light Source 
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Scanning Transmission X-ray Microscopy at the Advanced Light Source 
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0.6% Machine Learning based Feed-Forward

5 days of user operation in Nov’23



Model Development
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• Data Sampling: 
– Derived from two years of user operation data  
– Ensures representative operational conditions

Acquiring Training Data

8

ID Setpoints (1 Year of User Operation)
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• Data Sampling: 
– Derived from two years of user operation data  
– Ensures representative operational conditions

• Data Acquisition and Recording: 
– Gathered during accelerator physics shifts 
– Independent exercise of each insertion device  
– All ID read-backs and beam size recorded at 10Hz  
– EPICS based archiver system  
– 12-hour, 27 ID parameters (466k x 27 samples)

• Operational Challenges: 
– High value of AP time leads to nighttime shifts 
– ID setup not optimized for fast ramping (ID 

amplifier trips, local ID FF trips) 
– Implementation of watchdog with for 

operational oversight very important

Acquiring Training Data
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Training Data Acquisition
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ID Setpoints (User Operation and Training Data)
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Neural Network Architecture
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• Model Input/Output: 
– 27 ID input parameters 
– 1 beam size prediction output 
– Dispersion wave used to correct beamsize 
• Studied Neural Network Types: 

– RNN, CNN, MLP 
• MLP Hyperparameter Search: 

– Number of hidden layers:  3 
– Neurons per Layer: 128/64/32 
– Activation Function: Tanh 
• Final Hyperparameter Search: 

– Weight decay: 1E-3 
– Dropout rate: 0.2 
• Takes about 15min on RTX2060 GPU

ID Gaps EPU Gaps and Phase

Beamsize

64

32

128
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• Archive of Operational Data 
– 18 months of user ops data available 
– Subject to asynchronous 

downsampling before shutdown 
– Training on old data not possible  
• Observations:  

– Prediction accuracy varies 
significantly between weeks 

– No significant long term drift 
apparent  

– Average performance of 0.6µm 
(noise floor: 0.3µm)

Evaluation on Historical User Operation Data

10
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• How much training time is required for 
perfect model?

Impact of Training Data Size on Model Performance

11
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• How much training time is required for 
perfect model?
• Chronologically Split Data: 

– Can not randomly select datapoints for 
evaluation (oversampling at 10Hz)

Impact of Training Data Size on Model Performance
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• How much training time is required for 
perfect model?
• Chronologically Split Data: 

– Can not randomly select datapoints for 
evaluation (oversampling at 10Hz)

• Evaluation Procedure: 
– Remove 1h randomly from the data set for 

evaluation 
– Choose [1,…11]h for training 
– 10 seed for each configuration 
– Evaluate RMSE on evaluation  data

Impact of Training Data Size on Model Performance

11

EvaluationTraining Available Data

2h 1h 12h
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• How much training time is required for 
perfect model?
• Chronologically Split Data: 

– Can not randomly select datapoints for 
evaluation (oversampling at 10Hz)

• Evaluation Procedure: 
– Remove 1h randomly from the data set for 

evaluation 
– Choose [1,…11]h for training 
– 10 seed for each configuration 
– Evaluate RMSE on evaluation  data
• Observed Convergence: 

– Reasonable convergence at first 
– Trend suggests infeasible amount of data 

required to reach noise level 

Impact of Training Data Size on Model Performance
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Measurement Noise: 0.3µm
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K. Rajput, “Model up-keep with continual learning”, MaLAPA’24

Continual Online Fine-Tuning 

12



Operational Integration of ML Techniques for Beam Size Control in the ALS  | MaLAPA’24

K. Rajput, “Model up-keep with continual learning”, MaLAPA’24

Continual Online Fine-Tuning 

12

EPICS archiver  
appliance 
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K. Rajput, “Model up-keep with continual learning”, MaLAPA’24

Continual Online Fine-Tuning 

12

EPICS archiver  
appliance 

Calculate beam size if 
no correction would 
have been applied
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K. Rajput, “Model up-keep with continual learning”, MaLAPA’24

Continual Online Fine-Tuning 
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EPICS archiver  
appliance 

Calculate beam size if 
no correction would 
have been applied

Phoebus GUI to set 
buffer size, training 

parameters, training 
interval, etc.
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K. Rajput, “Model up-keep with continual learning”, MaLAPA’24

Continual Online Fine-Tuning 
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EPICS archiver  
appliance 

Calculate beam size if 
no correction would 
have been applied

Phoebus GUI to set 
buffer size, training 

parameters, training 
interval, etc.

Sliding 
window buffer
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K. Rajput, “Model up-keep with continual learning”, MaLAPA’24

Continual Online Fine-Tuning 
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EPICS archiver  
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Calculate beam size if 
no correction would 
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K. Rajput, “Model up-keep with continual learning”, MaLAPA’24

Continual Online Fine-Tuning 
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EPICS archiver  
appliance 

Calculate beam size if 
no correction would 
have been applied

Phoebus GUI to set 
buffer size, training 

parameters, training 
interval, etc.

Sliding 
window buffer

“Anchor” weights by 
starting from pre-trained 

model each cycle
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K. Rajput, “Model up-keep with continual learning”, MaLAPA’24

Continual Online Fine-Tuning 

12

EPICS archiver  
appliance 

Calculate beam size if 
no correction would 
have been applied

Phoebus GUI to set 
buffer size, training 

parameters, training 
interval, etc.

Sliding 
window buffer

“Anchor” weights by 
starting from pre-trained 

model each cycle

Archiving of training 
parameters (number of 
epochs, initial loss, etc.)
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• Online Fine-Tuning: 
– Circular buffer to record model input 
– Train base model on data in buffer only 
– Start from base model each cycle to avoid 

runaway 
– Uncorrected beamsize calculated with DWP 
• Parameters: 

– Typically 1k samples in buffer 
– Takes less then 100 epochs and about 1s 
• Feedback vs Feedforward: 

– Online retraining acts as feedback 
– Buffer size controls impact of FB vs. FF

Continual Online Fine-Tuning 

13

Buffer length

Buffer length



Model Deployment
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• Python Backend: 
– PyTorch 
– Currently on control room VM 
– Plan to implement on IOC this year 
• Dedicated EPICS IOC: 

– 600 PVs required 
– Goal: concentrate all logic on EPICS 
• PHOEBUS GUI: 

– State of the art control system GUI 
– Easy integration with EPICS 
– Expert/Operator Panel

Beam Size Control Backend Layout 

15

EPICS PHOEBUSPython
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Archiver Replayer: Invaluable R&D Tool

16

Archiver Client

EPICS Archiver

(Local) EPICS IOC

ML Pvs (*.db)

Timestamp

PV-List

Local PV Data

• Local IOC Sandbox: 
– Beam size control IOC acting as a 

development sandbox
• Archived Data Utilization:  

– Archiver client to download historical data 
– dummyPVs.db automatically generated 

from archiver client 
– Python loop over PVs in *.csv file
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• Inhibitor Chain: 
– Can not activate beam size control 
– Can only pause operation 
– Includes manual override options 
• Critical Conditions: 

– Beam current, FOFB, local ID FF 
– Skew quads ok, W5 closed 
– Control room request 
• Crucial for Reliable Operation

Inhibitor Chain

18
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• Beam Outage and Recovery Events 
– 12 beam outages recorded in 2 months 
– Autonomous reactivation of BSC algorithm  
– No manual intervention required 
– Automated model update 
• Outage Example: RF Power Trip Incident: 

– RF power trip at 14:07 
– Triggered inhibitor PVs 
– BSC disengaged  
– IDs opened for refilling the machine 
• Restoration Process: 

– Injection process from 14.55 am to 15.10 
– Conditions met for FF algorithm from 15.12 
– Vertical beam size back to target 42.5um

Hands-Off Beam Outage Recovery

19
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Hands-Off Beam Outage Recovery
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Summary

21

• Vertical Beam Size Variation at ALS 
– Dominating source of variation at STXM beamlines 
– Conventional correction techniques insufficient  
• Model Development: 

– Comprehensive model- and hyper parameter search 
– Evaluation on historical user operation data 
• Online Finetuning: 

– Continuous fine tuning of base model during operation 
– Outperforms conventional feedback correction 
• Routine Deployment: 

– Utilization of EPICS backend and Phoebus Frontend 
– ML FF in routine operation since October’23


