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PARAMETER VALUE
Beam energy 1.9 GeV
Circumference 196.8 m
Beam current 500 mA
Horizontal emittance 2 nm-rad
Vertical emittance 0.04 nmrad
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Insertion Devices at the Advanced Light Source

14 vertical gaps (1 always fixed) + 7 EPUs with 2x horizontal offsets = 27 free parameters

Quantum Materials (MAESTRO)

Coherent Scattering and Microscopy (COSMIC)
Calibration, Optics Testing, Spectroscopy
Magnetic Spectroscopy / Materials Science
Full-Field Transmission Soft X-Ray Microscopy
Energy, Catalytic, and Chemical Science (AMBER)
Double-Dispersion RIXS (QERLIN)

Polymer STXM

STXM

Research and Development

Macromolecular Crystallography (BCSB)
Macromolecular Crystallography (BCSB)
Macromolecular Crystallography (BCSB)
Macromolecular Crystallography (MBC)
High-Resolution Spectroscopy (MERLIN)
Magnetic Spectroscopy and Scattering
General X-Ray Testing Station

X-Ray Footprinting

National Center for X-Ray Tomography
Macromolecular Crystallography (GEMINI)

IR Imaging and Tomography

IR Spectromicroscopy
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High-Pressure In Situ Soft X-Ray Spectroscopy
SAXS/WAXS/GISAXS

Surface and Materials Science (RIXS)
Macromolecular Crystallography (BCSB/HHMI)
Macromolecular Crystallography (BCSB/HHMI)
Macromolecular Crystallography (TomAlberTron)
Tomography (micro-CT)

Chemical Transformations

Tender X-Ray Spectroscopy

Ambient-Pressure Soft X-Ray Spectroscopy
ARPES, SpinARPES

X-Ray Fluorescence Microprobe (XFM)

X-Ray Fluorescence Microprobe (XFM)
PEEM3/Resonant Soft X-Ray Scattering
Molecular Environmental Science

EUV Lithography Photomask Imaging (SHARP)
EUV Lithography Nanopatterning (MET/METS5)
Coherent X-Ray Scattering

Small-Molecule Crystallography

Diffraction Under Non-Ambient Conditions
SIBYLS—MX and SAXS

Microdiffraction
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Electron Beam Stability at the Advanced Light Source

100

« Beam Current:
— Top-off operation keeps

current variations below 1mA

e Beam Position:

— Orbit feedback and ID feed-

forwards stabilize source

positions to sub-micron level

e Beam Size:

—|D skew quadrupole feed-
forwards stabilize source size

— Requires lookup tables
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Scanning Transmission X-ray Microscopy at the Advanced Light Source

e STXM Beamlines:

— Widely used for nanoscale studies
— Fast raster scanning

—No averaging

—= 1 ms/pixel, 1 s/line, 6 min/scan
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iwi‘{‘\;\‘?}:&"‘j Contents lists available at ScienceDirect
S PO, Journal of Electron Spectroscopy and Related Phenomena
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FI SEVIER journal homepage: www.elsevier.com/locate/elspec

Scanning transmission X-ray microscopy at the Advanced Light Source

Thomas Feggeler >*, Abraham Levitan “°, Matthew A. Marcus”, Hendrik Ohldag >,
David A. Shapiro®

b)

X-ray beam Fresnel zone
plate

“| “Section of a ptychography
reconstruction of 40nm and
100nm gold nanoparticles on
a silicon nitride membrane’

Photodiode

Sample
Order sorting

aperture
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Scanning Transmission X-ray Microscopy at the Advanced Light Source

e STXM Beamlines:

— Widely used for nanoscale studies
— Fast raster scanning b
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Scanning Transmission X-ray Microscopy at the Advanced Light Source

STXM e  Current e Size
e STXM Beamlines: 0.05% 0.2% 3.5%

Mean Intensity

— Fast raster scanning )
Row Number " 7 T
—No averaging 0 100 200 300 400 838888

—= 1 ms/pixel, 1 s/line, 6 min/scan ol | = -} —
e Current ID Feed Forward: 5 QOQEAL-/H; === e
— LOCO at various gaps to obtain (local) - 0
skew quadrupole corrector settings ;2
— Interpolation table used in FF 322 o
correction i _ ol
— Takes one night to measure a

| I | |
12:00 18:00 00:00 06:00

— Aging of tables results in large
variation of vertical beam size

o STXM Intensity Fluctuations:

— Residual ID induced vertical beamsize
variations biggest contributor

Photodiode

—POC: Leemann et al., PRL 123,194801 X-ray beam Fresnel zone . Sample
at Order sorting
plate aperture
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Scanning Transmission X-ray Microscopy at the Advanced Light Source

STXM e  Current e Size
e STXM Beamlines: 0.05% 0.2% 3.5%
— Widely used for nanoscale studies _4— Machine Learning based Feed-Forward
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Model Development




Acquiring Training Data

. ID Setpoints (1 Year of User Operation
e Data Sampling: P ob § | | p1 | ) .
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Acquiring Training Data

e Data Sampling:
— Derived from two years of user operation data
— Ensures representative operational conditions

—
-]
-

Vertical gap [mm]
Ot
S

» Data Acquisition and Recording:

— Gathered during accelerator physics shifts
—Independent exercise of each insertion device

— All ID read-backs and beam size recorded at 10Hz
— EPICS based archiver system

—12-hour, 27 ID parameters (466k x 27 samples)

e Operational Challenges:
— High value of AP time leads to nighttime shifts

-

Ot
-

Horizontal offset [mm]
O
S o

&)
-

—ID setup not optimized for fast ramping (ID El
amplifier trips, local ID FF trips) 845

—Implementation of watchdog with for :
M 40

operational oversight very important
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Acquiring Training Data

e Data Sampling:
— Derived from two years of user operation data
— Ensures representative operational conditions

» Data Acquisition and Recording:

— Gathered during accelerator physics shifts
—Independent exercise of each insertion device

— All ID read-backs and beam size recorded at 10Hz
— EPICS based archiver system

—12-hour, 27 ID parameters (466k x 27 samples)

e Operational Challenges:

— High value of AP time leads to nighttime shifts

—ID setup not optimized for fast ramping (ID
amplifier trips, local ID FF trips)

—Implementation of watchdog with for
operational oversight very important
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Neural Network Architecture

e Model Input/Output:

— 27 ID input parameters
—1 beam size prediction output
— Dispersion wave used to correct beamsize

» Studied Neural Network Types:
—RNN, CNN, MLP

« MLP Hyperparameter Search:

— Number of hidden layers: 3
— Neurons per Layer: 128/64/32
— Activation Function: Tanh

e Final Hyperparameter Search:
— Weight decay: 1E-3
— Dropout rate: 0.2

e Takes about 15min on RTX2060 GPU
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ID Gaps

EPU Gaps and Phase

iz

e

128

-

!

64

)

2

l

@® Beamsize

Hyperparameter

Search Space

Number of Hidden Layers

Number of Neurons per Layer
Activation Function

{1,2,3}

{2"},1<n<9
{ReLU, Tanh, Sigmoid}

Weight decay
Dropout rate

{100"},1<n<5
{0.2,0.4,0.6,0.8}
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Evaluation on Historical User Operation Data

e Archive of Operational Data

— 18 months of user ops data available

— Subject to asynchronous
downsampling before shutdown

—Training on old data not possible

e Observations:

— Prediction accuracy varies
significantly between weeks

— No significant long term drift
apparent

— Average performance of 0.6um
(noise floor: 0.3um)
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Impact of Training Data Size on Model Performance

« How much training time is required for

perfect model?

H BERKELEY LAB
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Impact of Training Data Size on Model Performance

« How much training time is required for
perfect model?

260
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Impact of Training Data Size on Model Performance

Training Evaluation Available Data

+ How much training time s required for B N 7Y 1Y

perfect model?
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Impact of Training Data Size on Model Performance

« How much training time is required for
perfect model?

e Chronologically Split Data:

— Can not randomly select datapoints for
evaluation (oversampling at 10Hz)

e Evaluation Procedure:

—Remove 1h randomly from the data set for
evaluation

— Choose [1,...11]h for training
— 10 seed for each configuration
— Evaluate RMSE on evaluation data

Q:T\ ADVANCED LIGHT SOURCE
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Training Evaluation Available Data
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10x
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Impact of Training Data Size on Model Performance

« How much training time is required for

perfect model? :
e Chronologically Split Data:
—Can not randomly select datapoints for 0.9 .
evaluation (oversampling at 10Hz) )
 Evaluation Procedure: 53"‘
—Remove 1h randomly from the data set for = adl _
evaluation Q;
—Choose [1,...11]h for training 207, ]
— 10 seed for each configuration %
— Evaluate RMSE on evaluation data i
e Observed Convergence: 0.6+
— Reasonable convergence at first
—Trend suggests infeasible amount of data 0.5 | | | | l

required to reach noise level 2 4 6 8 10
Size of Training Set |h]
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Impact of Training Data Size on Model Performance

« How much training time is required for

perfect model? :
e Chronologically Split Data: 0.9 )
— Can not randomly select datapoints for
evaluation (oversampling at 10Hz) R ]
» Evaluation Procedure: i’ '
—Remove 1h randomly from the data set for = 0.7} }
evaluation Q;’
—Choose [1,...11]h for training 2 0.6 N -
— 10 seed for each configuration %
— Evaluate RMSE on evaluation data 5 0.97 )
e Observed Convergence: _ | _
— Reasonable convergence at first . Measurement Noise: 0.3um
—Trend suggests infeasible amount of data 0.3 l | l \
required to reach noise level 10 20 30 40 50

Size of Training Set |h]
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Continual Online Fine-Tuning
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COntinuaI Online Fine-Tuning ID Gaps EPU Gaps and Phase
<\
EPICS archiver

Calculate beam size if
no correction would
have been applied
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Continual Online Fine-Tuning
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Continual Online Fine-Tuning
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Deployment
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Archiving of training
parameters (number of
epochs, initial loss, etc.)

“Anchor” weights by

starting from pre-trained
model each cycle
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Continual Online Fine-Tuning

e Online Fine-Tuning:
— Circular buffer to record model input
—Train base model on data in buffer only

— Start from base model each cycle to avoid
runaway

— Uncorrected beamsize calculated with DWP

e Parameters:

— Typically 1k samples in buffer
— Takes less then 100 epochs and about 1s

e Feedback vs Feedforward:

— Online retraining acts as feedback
— Buffer size controls impact of FB vs. FF

\S% ¢ ADVANCED LIGHT SOURCE
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Beam Size Control Backend Layout

e Python Backend:
— PyTorch (Python) -— (EPICS) -— (PHOEBUS)
— Currently on control room VM
— Plan to implement on 10C this year

e Dedicated EPICS IOC:

— 600 PVs required
— Goal: concentrate all logic on EPICS

« PHOEBUS GUI:

— State of the art control system GUI
— Easy integration with EPICS
— Expert/Operator Panel

P
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Archiver Replayer: Invaluable R&D Tool

e Local IOC Sandbox: EEPICS Archiver]
— Beam size control I0C acting as a l

development sandbox
e Archived Data Utilization: [Archwer C“ent]

— Archiver client to download historical data
ELocal PV Dataj

ELocal) EPICS IOQ
!

EML Pvs (*.db) j
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Archiver Replayer: Invaluable R&D Tool

e Local IOC Sandbox:

— Beam size control I0C acting as a
development sandbox

e Archived Data Utilization:

— Archiver client to download historical data

—dummyPVs.db automatically generated
from archiver client

— Python loop over PVs in *.csv file

(=
\v‘\ ADVANCED LIGHT SOURCE

H BERKELEY LAB

EdummyPVs.dbj ELocal PV Dataj:

r--------

"""" Vo !
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CWps e
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Archiver Replayer: Invaluable R&D Tool

e Local IOC Sandbox:

— Beam size control I0C acting as a
development sandbox

e Archived Data Utilization:

— Archiver client to download historical data

—dummyPVs.db automatically generated
from archiver client

— Python loop over PVs in *.csv file

e Phoebus GUI Integration
—Phoebus running locally

3 ¢’} ADVANCED LIGHT SOURCE

H BERKELEY LAB

EEPICS Archiverj
EPICS “replayer”

EdummyPVs.dbj ELocal PV Dataj:

r--------

"""" l‘ !

E ML Pvs (*.db) j Phoebus GUI
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Archiver Replayer: Invaluable R&D Tool

e Local IOC Sandbox:

— Beam size control I0C acting as a
development sandbox

e Archived Data Utilization:

— Archiver client to download historical data

—dummyPVs.db automatically generated
from archiver client

— Python loop over PVs in *.csv file

e Phoebus GUI Integration
—Phoebus running locally

o Efficient R&D and Deployment:

— Enabled rapid prototyping and debugging
of the complete pipeline
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Python 4—» (Local) EPICS IOQ

EEPICS Archiverj
EPICS “replayer”

EdummyPVs.dbj ELocal PV Dataj:

r--------

"""" Vo !

ﬁ
=
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E ML Pvs (*.db) j Phoebus GUI
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Archiver Replayer: Invaluable R&D Tool
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Inhibitor Chain

e Inhibitor Chain:

— Can not activate beam size control
— Can only pause operation
—Includes manual override options

e Critical Conditions:

— Beam current, FOFB, local ID FF
— Skew quads ok, W5 closed

— Control room request

e Crucial for Reliable Operation

H BERKELEY LAB

i:‘w ADVANCED LIGHT SOURCE

BSC Output Request: @ ]

— Any of those individual i

nhibitors will block the output

[ SR Control Request: @ ]

|
‘ Press to Bypass

-
\

Beam Current @) = 400

Update Thres

hold

Manual Inhibit Override . Press to Bypass FOFB O 0 Update Threshold
|7 Manual @ Press to Bypass
. Press to Bypass W5Closed O 13.8 Update Threshold
. Press to Bypass ID FF O 0.0 Update Threshold
. Press to Bypass Skew PS O 0 Update Threshold
L - |

External Inhibit:

O ok

Inhibitor Feedthrough: @

BSC Output Active: @
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Inhibitor Chain

e Inhibitor Chain:

— Can not activate beam size control
— Can only pause operation
—Includes manual override options

e Critical Conditions:

— Beam current, FOFB, local ID FF
— Skew quads ok, W5 closed

— Control room request

e Crucial for Reliable Operation
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i:‘w ADVANCED LIGHT SOURCE

BSC Output Request: @ ]

— Any of those individual inhibitors will block the output

[ SR Control Request: @ ]

|
‘ Pres ypass Beam Current O 400 Update Threshold
Manual Inhibit Override . Press to Bypass FOFB O 0 Update Threshold
|7 Manual @ Press to Bypass
O Disable Bypass W5Closed O 13.8 Update Threshold
. Pre ypass ID FF O 0.0 Update Threshold
. Press to Bypass Skew PS O 0 Update Threshold
L - |
External Inhibit: O ok

Inhibitor Feedthrough: ©

BSC Output Active: @
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Inhibitor Chain

e Inhibitor Chain:

— Can not activate beam size control
— Can only pause operation
—Includes manual override options

e Critical Conditions:

— Beam current, FOFB, local ID FF
— Skew quads ok, W5 closed

— Control room request

e Crucial for Reliable Operation

H BERKELEY LAB

i:‘w ADVANCED LIGHT SOURCE

BSC Output Request: O ]

— Any of those individual inhibitors will block the output

[ SR Control Request: @ ]

|
‘ Pres ypass Beam Current O 400 Update Threshold
Manual Inhibit Override . Press to Bypass FOFB O 0 Update Threshold
|7 Manual @ Press to Bypass
O Disable Bypass W5Closed O 13.8 Update Threshold
. Pre ypass ID FF O 0.0 Update Threshold
. Press to Bypass Skew PS O 0 Update Threshold
L - |
External Inhibit: O ok

Inhibitor Feedthrough: ©

BSC Output Active: ©
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Hands-Off Beam Outage Recovery

!
pl
-

« Beam Outage and Recovery Events

e T e B

— 12 beam outages recorded in 2 months

Ver. gap [mm

. . . . 0 | | ‘
Autonomous reactivation of BSC algorithm Now 03 Now 09 Now 10
—No manual intervention required - 202
30
— Automated model update A o5
S 10
T 0 M“
é -10 - | " |
= Nov 08 Nov 09 Nov 10
2023
é l —Uncorrected
0 45 —Beamline 3.1
%ﬂ - o —Offset
g 40 - | | | W
Nov 08 Nov 09 Nov 10
2023
)
2 |
S5 —Sum of Inhibitors!
= :
S
8
~ 0 | | 1
=
— Nov 08 Nov 09 Nov 10
2023
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Hands-Off Beam Outage Recovery

- |
« Beam Outage and Recovery Events E90F | -
@F
° =‘==ﬁ—é-nﬁ-:
— 12 beam outages recorded in 2 months % —
— Autonomous reactivation of BSC algorithm 71330 1400 1430 1500 1530 1600 16:30 1700 17:30  18:00  18:30
— No manual intervention required _ Nov 09, 2023
= 30- | -
— Automated model update E 90 :
. . S 10~ _
e Outage Example: RF Power Trip Incident: % o
é -10 = | | | | | | ‘ U‘ 1 J 1 |
— RF power trip at 14:07 T
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Nov 09, 2023

—Uncorrected
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—Offset

|
13:30  14:00  14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30

—Triggered inhibitor PVs
— BSC disengaged
—|Ds opened for refilling the machine

S
-

Beamsize [pm]

Nov 09, 2023

)

N J .

2 5L —Sum of Inhibitors-

§ F ‘\1

=

% O | | | | | | | | |
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Nov 09, 2023
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« Beam Outage and Recovery Events

— 12 beam outages recorded in 2 months
— Autonomous reactivation of BSC algorithm

—No manual intervention required
— Automated model update

e Outage Example: RF Power Trip Incident:

— RF power trip at 14:07
—Triggered inhibitor PVs
— BSC disengaged

—|Ds opened for refilling the machine

e Restoration Process:

—Injection process from 14.55 am to 15.10
— Conditions met for FF algorithm from 15.12
— Vertical beam size back to target 42.5um

H BERKELEY LAB
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Hands-Off Beam Outage Recovery
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Summary

e Vertical Beam Size Variation at ALS

— Dominating source of variation at STXM beamlines
— Conventional correction techniques insufficient

« Model Development:

— Comprehensive model- and hyper parameter search
— Evaluation on historical user operation data

e Online Finetuning:

— Continuous fine tuning of base model during operation
— Outperforms conventional feedback correction

» Routine Deployment: e
— Utilization of EPICS backend and Phoebus Frontend
— ML FF in routine operation since October’23

100 120
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