Operational Integration of Machine Learning for Beam Size Control in the Advanced Light Source

Thorsten Hellert, Tynan Ford, Simon C. Leemann, Hiroshi Nishimura, Andrea Pollastro, Marco Venturini

FFFFF

BERKELEY LAB

ALS Accelerator Physics Group

06.03.24

PARAMETER

Beam energy Circumference Beam current Horizontal emittance Vertical emittance

VALUE

1,9 GeV 196.8 m 500 mA 2 nm·rad 0.04 nm·rad

ALS Triple-Bend Achromat Lattice

Insertion Devices at the Advanced Light Source

14 vertical gaps (1 always fixed) + 7 EPUs with 2x horizontal offsets = 27 free parameters

ADVANCED LIGHT SOURCE

Electron Beam Stability at the Advanced Light Source

Gap [mm]

[mA]

- Beam Current:
 - Top-off operation keeps current variations below 1mA
- Beam Position:
 - Orbit feedback and ID feedforwards stabilize source positions to sub-micron level
- Beam Size:
 - ID skew quadrupole feedforwards stabilize source size
 - Requires lookup tables

ID BPM $[\mu m]$

- STXM Beamlines:
 - Widely used for nanoscale studies
 - Fast raster scanning
 - No averaging
 - $-\approx 1 \text{ ms/pixel}, 1 \text{ s/line}, 6 \text{ min/scan}$

Scanning transmission X-ray microscopy at the Advanced Light Source Thomas Feggeler^{a,b,*}, Abraham Levitan^{c,b}, Matthew A. Marcus^b, Hendrik Ohldag^{b,d,e}, David A. Shapiro^b

Contents lists available at ScienceDirect

Journal of Electron Spectroscopy and Related Phenomena

journal homepage: www.elsevier.com/locate/elspec

"Section of a ptychography" reconstruction of 40nm and 100nm gold nanoparticles on a silicon nitride membrane"

- STXM Beamlines:
 - Widely used for nanoscale studies
 - Fast raster scanning
 - No averaging
 - $-\approx 1 \text{ ms/pixel}, 1 \text{ s/line}, 6 \text{ min/scan}$
- Current ID Feed Forward:
 - LOCO at various gaps to obtain (local) skew quadrupole corrector settings
 - Interpolation table used in FF correction
 - Takes one night to measure
 - Aging of tables results in large variation of vertical beam size

- STXM Beamlines:
 - Widely used for nanoscale studies
 - Fast raster scanning
 - No averaging

BERKELEY LAB

- $-\approx 1 \text{ ms/pixel}, 1 \text{ s/line}, 6 \text{ min/scan}$
- Current ID Feed Forward:
 - LOCO at various gaps to obtain (local) skew quadrupole corrector settings
 - Interpolation table used in FF correction
 - Takes one night to measure
 - Aging of tables results in large variation of vertical beam size
- STXM Intensity Fluctuations:
 - Residual ID induced vertical beamsize variations biggest contributor
 - POC: Leemann et al., PRL 123,194801

e⁻ Position e⁻ Current e⁻ Size 3.5% 0.1% 0.2%

- STXM Beamlines:
 - Widely used for nanoscale studies
 - Fast raster scanning
 - No averaging

BERKELEY LAB

- $-\approx 1 \text{ ms/pixel}, 1 \text{ s/line}, 6 \text{ min/scan}$
- Current ID Feed Forward:
 - LOCO at various gaps to obtain (local) skew quadrupole corrector settings
 - Interpolation table used in FF correction
 - Takes one night to measure
 - Aging of tables results in large variation of vertical beam size
- STXM Intensity Fluctuations:
 - Residual ID induced vertical beamsize variations biggest contributor
 - POC: Leemann et al., PRL 123,194801

Position e⁻ Current e⁻ Size STXM **e**⁻ 0.05% 0.1% 3.5% 0.2%

Model Development

Acquiring Training Data

- Data Sampling:
 - Derived from two years of user operation data
 - Ensures representative operational conditions

Acquiring Training Data

- Data Sampling:
 - Derived from two years of user operation data
 - Ensures representative operational conditions
- Data Acquisition and Recording:
 - Gathered during accelerator physics shifts
 - Independent exercise of each insertion device
 - All ID read-backs and beam size recorded at 10Hz
 - EPICS based archiver system
 - 12-hour, 27 ID parameters (466k x 27 samples)
- Operational Challenges:
 - High value of AP time leads to nighttime shifts
 - ID setup not optimized for fast ramping (ID amplifier trips, local ID FF trips)
 - Implementation of watchdog with for operational oversight very important

Training Data Acquisition 100Vertical gap [mm] 501.21.61.81.4 time [h] Horizontal offset [mm] 50-50 1.21.81.41.6time [h] 50 $[\mu m]$ Beamsize 1.21.81.41.6time [h]

Acquiring Training Data

- Data Sampling:
 - Derived from two years of user operation data
 - Ensures representative operational conditions
- Data Acquisition and Recording:
 - Gathered during accelerator physics shifts
 - Independent exercise of each insertion device
 - All ID read-backs and beam size recorded at 10Hz
 - EPICS based archiver system
 - 12-hour, 27 ID parameters (466k x 27 samples)
- Operational Challenges:
 - High value of AP time leads to nighttime shifts
 - ID setup not optimized for fast ramping (ID amplifier trips, local ID FF trips)
 - Implementation of watchdog with for operational oversight very important

Neural Network Architecture

- Model Input/Output:
 - 27 ID input parameters
 - 1 beam size prediction output
 - Dispersion wave used to correct beamsize
- Studied Neural Network Types:
 - RNN, CNN, *MLP*
- MLP Hyperparameter Search:
 - Number of hidden layers: 3
 - Neurons per Layer: 128/64/32
 - Activation Function: Tanh
- Final Hyperparameter Search:
 - Weight decay: 1E-3
 - Dropout rate: 0.2
- Takes about 15min on RTX2060 GPU

Hyperparameter	Search Space
Number of Hidden Layers	$\{1, 2, 3\}$
Number of Neurons per Layer	$\{2^n\}, 1 \le n \le 9$
Activation Function	{ReLU, Tanh, Sigmoi
Weight decay	$\{10^{-n}\}, 1 \le n \le 5$
Dropout rate	$\{0.2, 0.4, 0.6, 0.8\}$

Evaluation on Historical User Operation Data

- Archive of Operational Data
 - -18 months of user ops data available
 - Subject to asynchronous downsampling before shutdown - Training on old data not possible
- Observations:
 - Prediction accuracy varies significantly between weeks
 - No significant long term drift apparent
 - Average performance of 0.6µm (noise floor: 0.3µm)

 How much training time is required for *perfect* model?

- How much training time is required for *perfect* model?
- Chronologically Split Data:
 - Can not randomly select datapoints for evaluation (oversampling at 10Hz)

- How much training time is required for perfect model?
- Chronologically Split Data:
 - Can not randomly select datapoints for evaluation (oversampling at 10Hz)
- Evaluation Procedure:
 - Remove 1h randomly from the data set for evaluation
 - Choose [1,...11]h for training
 - 10 seed for each configuration
 - Evaluate RMSE on evaluation data

Operational Integration of ML Techniques for Beam Size Control in the ALS | MaLAPA'24

11

- How much training time is required for *perfect* model?
- Chronologically Split Data:
 - Can not randomly select datapoints for evaluation (oversampling at 10Hz)
- Evaluation Procedure:
 - Remove 1h randomly from the data set for evaluation
 - Choose [1,...11]h for training
 - 10 seed for each configuration
 - Evaluate RMSE on evaluation data

- How much training time is required for *perfect* model?
- Chronologically Split Data:
 - Can not randomly select datapoints for evaluation (oversampling at 10Hz)
- Evaluation Procedure:
 - Remove 1h randomly from the data set for evaluation
 - Choose [1,...11]h for training
 - 10 seed for each configuration
 - Evaluate RMSE on evaluation data
- Observed Convergence:
 - Reasonable convergence at first
 - Trend suggests infeasible amount of data required to reach noise level

- How much training time is required for *perfect* model?
- Chronologically Split Data:
 - Can not randomly select datapoints for evaluation (oversampling at 10Hz)
- Evaluation Procedure:
 - Remove 1h randomly from the data set for evaluation
 - Choose [1,...11]h for training
 - 10 seed for each configuration
 - Evaluate RMSE on evaluation data
- Observed Convergence:
 - Reasonable convergence at first
 - Trend suggests infeasible amount of data required to reach noise level

Continual Online Fine-Tuning

BERKELEY LAB

Continual Online Fine-Tuning

·····

BERKELEY LAB

BERKELEY LAB

BERKELEY LAB

Continual Online Fine-Tuning

- Online Fine-Tuning:
 - Circular buffer to record model input
 - Train base model on data in buffer only
 - Start from base model each cycle to avoid runaway
 - Uncorrected beamsize calculated with DWP
- Parameters:
 - Typically 1k samples in buffer
 - Takes less then 100 epochs and about 1s
- Feedback vs Feedforward:
 - Online retraining acts as feedback
 - Buffer size controls impact of FB vs. FF

Model Deployment

Beam Size Control Backend Layout

- Python Backend:
 - PyTorch
 - Currently on control room VM
 - Plan to implement on IOC this year
- Dedicated EPICS IOC:
 - -600 PVs required
 - Goal: concentrate all logic on EPICS
- PHOEBUS GUI:
 - State of the art control system GUI
 - Easy integration with EPICS
 - Expert/Operator Panel

- Local IOC Sandbox:
 - Beam size control IOC acting as a development sandbox
- Archived Data Utilization:
 - Archiver client to download historical data

- Local IOC Sandbox:
 - Beam size control IOC acting as a development sandbox
- Archived Data Utilization:
 - Archiver client to download historical data
 - dummyPVs.db automatically generated from archiver client
 - Python loop over PVs in **.csv* file

- Local IOC Sandbox:
 - Beam size control IOC acting as a development sandbox
- Archived Data Utilization:
 - Archiver client to download historical data
 - dummyPVs.db automatically generated from archiver client
 - Python loop over PVs in **.csv* file
- Phoebus GUI Integration – Phoebus running locally

- Local IOC Sandbox:
 - Beam size control IOC acting as a development sandbox
- Archived Data Utilization:
 - Archiver client to download historical data
 - dummyPVs.db automatically generated from archiver client
 - Python loop over PVs in **.csv* file
- Phoebus GUI Integration – Phoebus running locally
- Efficient R&D and Deployment:
 - Enabled rapid prototyping and debugging of the complete pipeline

Inhibitor Chain

- Inhibitor Chain:
 - Can not activate beam size control
 - Can only pause operation
 - Includes manual override options
- Critical Conditions:
 - Beam current, FOFB, local ID FF
 - Skew quads ok, W5 closed
 - Control room request
- Crucial for Reliable Operation

Inhibitor Chain

- Inhibitor Chain:
 - Can not activate beam size control
 - Can only pause operation
 - Includes manual override options
- Critical Conditions:
 - Beam current, FOFB, local ID FF
 - Skew quads ok, W5 closed
 - Control room request
- Crucial for Reliable Operation

Inhibitor Chain

- Inhibitor Chain:
 - Can not activate beam size control
 - Can only pause operation
 - Includes manual override options
- Critical Conditions:
 - Beam current, FOFB, local ID FF
 - Skew quads ok, W5 closed
 - Control room request
- Crucial for Reliable Operation

Hands-Off Beam Outage Recovery

- Beam Outage and Recovery Events
 - 12 beam outages recorded in 2 months
 - Autonomous reactivation of BSC algorithm
 - No manual intervention required
 - Automated model update

Hands-Off Beam Outage Recovery

- Beam Outage and Recovery Events
 - 12 beam outages recorded in 2 months
 - Autonomous reactivation of BSC algorithm
 - No manual intervention required
 - Automated model update
- Outage Example: RF Power Trip Incident:
 - RF power trip at 14:07
 - Triggered inhibitor PVs
 - BSC disengaged
 - IDs opened for refilling the machine

Hands-Off Beam Outage Recovery

- Beam Outage and Recovery Events
 - 12 beam outages recorded in 2 months
 - Autonomous reactivation of BSC algorithm
 - No manual intervention required
 - Automated model update
- Outage Example: RF Power Trip Incident:
 - RF power trip at 14:07
 - Triggered inhibitor PVs
 - BSC disengaged
 - IDs opened for refilling the machine
- Restoration Process:
 - Injection process from 14.55 am to 15.10
 - Conditions met for FF algorithm from 15.12
 - Vertical beam size back to target 42.5um

Summary

- Vertical Beam Size Variation at ALS
 - Dominating source of variation at STXM beamlines
 - Conventional correction techniques insufficient
- Model Development:
 - Comprehensive model- and hyper parameter search
 - Evaluation on historical user operation data
- Online Finetuning:
 - Continuous fine tuning of base model during operation
 - Outperforms conventional feedback correction
- Routine Deployment:
 - Utilization of EPICS backend and Phoebus Frontend
 - ML FF in routine operation since October'23

