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ATLAS: ARGONNE TANDEM LINEAR ACCELERATOR SYSTEM

Fragment

v’ 1st Superconducting heavy-ion linac in the world Mass Analyzer
v'It has been operating for over 40 years
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BRIEF OVERVIEW OF THE ATLAS ML PROJECT

Use of artificial intelligenceto optimize accelerator operations
and improve machine performance

U At ATLAS, we switch ion beam species every 3-4 days ... - Using Al could
streamline beam tuning & help improve machine performance

U The main project goals are:

o Data collection, organization and classification, towards a fully automated
and electronic data collection for both machine and beam data... established

o Online tuning model to optimize operations and shorten beam tuning time
in order to make more beam time available for the experimental program

... completed for several sections of the linac
o Virtual model to enhance understanding of machine behavior to improve
performance and optimize particular/new operating modes ... progress
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SUMMARY OF PROGRESS & HIGHLIGHTS

O Automated data collection and two-way communication established

U Bayesian Optimization (BO) successfully used for online beam tuning

L Multi-Objective BO (MOBO) to optimize transmission and beam size

U Al-ML supporting the commissioning of a new beamline (AMIS)

4 Transfer learning from one ion beam to another (BO)

O Transfer learning from simulation to online model (BO with DKL)

U Reinforcement Learning (RL) for online beam tuning — First Exp. Success

a Some progress on the virtual machine model / physics model
(@ ENERGY (ot Argonne &
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AUTOMATED DATA COLLECTION - ESTABLISHED

v' Beam currents and beam profiles digitized
v' A pythoninterface developed to collect the data automatically
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ONLINE = INTERFACE WITH CONTROL SYSTEM

Laptop 73 ¢ get all

the data from the machine Python

< | e <‘I:| -
SERVER )
D I > - : — Control System
e

POST: set new settings to the machine

OFFLINE - INTERFACE WITH BEAM SIMULATION

v Python wrapper for TRACK (Simulation Code
y _ PP _ _ ( ) Python Wrapper A
v Generation of simulation data <:|
v' Different conditions and inputs |:>
v Integration with AI/ML modeling \_ J
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BRIEF DESCRIPTION OF BAYESIAN OPTIMIZATION

. Particle ——
( SettAmgs ]_> Accelerator [Transn;ussmn]

- e o e o o =

Bayesian Optimization

cquisitio Surrogate
Function Model

" o

v' Surrogate Model: Aprobabilistic model approximating the objective function
[Gaussian Processwith Radial Basis Function (RBF) Kernel and Gaussian likelihood]
v" Acquisition Function tells the modelwhere to query the system nextfor more likely improvement
» Bayesian Optimization with Gaussian Processes guidesthe modeland gives areliable estimate of
uncertainty
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BAYESIAN OPTIMIZATION USED FOR BEAM TUNING

Beamline under study *
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AlI/ML SUPPORTING AMIS LINE COMMISSIONING

Beam
to
[] Booster

New Material Irradiation Station at ATLAS
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Filter

Lowenergy heavy-ion beams ~ 1 MeV/u can
effectively emulate material damage in nuclear
reactors, in both fuel and structural materials.

Transmission

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet,
two dipoles and two steerers [BOJ; Results: 40 > 70%
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Improving Beam Profiles

Problem: Produce symmetric beam profiles by varying a
triplet and a steerer [BO]
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Training online, slow convergence but steady progress.
Competition between nice profiles and beam transmission!
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MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

Multi-Objective Problem: Optimize transmission and beam profiles on target - Not easy for an operator!
Improving Beam Transmission & Improving Beam Profiles

Beam Symmetry vs Transmission - MOBO 'O
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TRANSFER LEARNING FROM 10 TO %°NE - BO

Goal: Train a model using one beam then transfer it to tune another beam - Faster switching and tuning

Training model on 10 =) Applying same model to 2Z2Ne

esn Target

100 Transmission through AMIS - From %0 to *2Ne

2Ne [BO]
—— %0 [BO]
80 Initial Set - 20 Rand. Conf.
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terafions uned beam 160 Model loaded for 22Ne: Initial transmission improved
53 > ~ 60% in 7 iterations: 48 - 55 %

Transmission [%)

Beam transmis. With more training for 22Ne: 48 > 67%

Model saved &

exported Scaling was applied from 160 to 22Ne, re-tuning is often
e — needed because of different initial beam distributions
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TRANSFER LEARNING FROM SIMULATION TO ONLINE

Goal: Train a model using simulations then use it for online tuning - Less training & faster convergence online

Method: Deep kernel learning (DKL) to combine the representational power of neural networks with
the reliable uncertainty estimates of Gaussian processes.

100 Transmission through AMIS - '°0 with DKL

—e— 159 [BO]
—e— 150 [BO+DKL]
50 150 [Tuned beam]
£ 160 Results:
BO + DKL
g o converges
faster than
' BO only
o2 = - - (53 > 56%)
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BRIEF DESCRIPTION OF REINFORCEMENT LEARNING

Basic Concept Implementation Example
m—————— Update= = = = = = = = =
_'@ Agent : _Update.@
—8— 1 | \J |
— Policy Enviroment : Cri;ic Error
\ . Actions. : 57
quate o * = —Value—p-[ Compare ]
RL Algorithm oW | Enviroment
Actions ey . Reward

S —— ——Ohservation
e 4‘7 ‘

o Actbr

State
Observations

Essence: Learning from experience based oninteraction with the environment
Action: Varies the parameters/variables of the problem

Reward: Measuresthe goal function to maximize/optimize

Policy: How the process evolves/learns

Algorithm used: Deep Deterministic Policy Gradient (DDPG); Actor-Critic Approach
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REINFORCEMENT LEARNING: FIRST ATTEMPT...

Simulation Case [ Simulation | , Q-2 03  Reward
v" Focusing the beam through an aperture > - : ‘ |
using an_elf_ectrostatic triplet (3 Quadrupoles) §
v' Voltage limites: ¢ Triplet Boatiino =
2—-10kV
v' Max. action: 'o
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REINFORCEMENT LEARNING: FIRST EXP. SUCCESS

Beamline under study [ Training-Online

. Quad-1 Quad-2 Quad-3 Reward: Transmission
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» Testing done for 8 episodes (16 steps/episode)

» Model converges in 2-3 steps, starting from random conf.

» RL is much slower than BO, requiring significantly more data - more iterations to train,
but once trained, it takes fewer steps to converge to the best solution ...
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PROGRESS ON THE VIRTUAL MACHINE MODEL
No Steering (<Diff> ~ 46%) With Steering (<Diff>~ 16%)
“e : ) e Son. tranamission y 1% Son i
" ‘ -0....- - * .o ee o v } ':Olol : :: t e 'l ':
Run # N N - ) ’ B Run # " *

v" In order to develop a realistic virtual machine mode, we need first to improve the predictability
of the physics model based on beam dynamics simulations (using TRACK).
v Significant improvement was realized by adding the steering effects, adding information on
misalignments and initial beam distribution should close the gap further.
v Once the agreement Is ~ 1%, a surrogate model will be developed based on the simulations.
(@ ENERGY (ot Argonne &
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NEW AI-ML PROJECT: BRIEF OVERVIEW

Same projecttitle: Use of artificial intelligenceto optimize
accelerator operations and improve machine performance

O The main objectives of the new project are:

o Deploy the autonomous beam tuning tools developed during our previous
project, evaluate their impact on both automating the tuning process and

saving on tuning time.
o Develop tools for new operating modes such as multi-user operation of the

ATLAS linac and high-intensity beams, as well as developing virtual
diagnostics to supplement existing ones.

‘ U.S. DEPARTMENT OF _ Argonne N ational Laboratory is a
U.S. Department of Energy laboratory
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MANY THANKS TO

0 Jose Martinez: He was the project postdoc and did most of the work ...

J ATLAS Controls Team:
Daniel Stanton and Kenneth Bunnell

O ATLAS Operations Team:
Ben Blomberg, Eric Letcher and Gavin Dunn

O ATLAS Users Liaison and beam time schedular:
Daniel Santiago
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THANK YOU
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