Detailed Characterization of Coherent Synchrotron Radiation Effects using Generative Phase Space Reconstruction

ICFA MaLAPA 2024, March 7th, Gyeongju, Korea

Juan Pablo Gonzalez-Aguilera*

University of Chicago

jpga@uchicago.edu

Outline

- Introduction
 - Coherent Synchrotron Radiation (CSR)
 - Importance
 - Measurement
 - -6D generative phase space reconstruction (GPSR R. Roussel's talk)
- Simulation studies of CSR at the Argonne Wakefield Accelerator (AWA)
- Detailed characterization of CSR using GPSR
- Discussion
- Summary and Conclusions

Coherent Synchrotron Radiation (CSR)

- FELs, need highly compressed beams longitudinally
- Dispersive lattices are used to compress the beams (e.g., chicanes)
- Coherent synchrotron radiation (CSR) is produced when bending beam trajectory
- CSR degrades beam quality

A. Edelen et al., IPAC 2022

CSR is a complex phenomenon that degrades beam quality

CSR Degrades Beam Quality

 Short-range CSR wakefield induces nonlinear kick in E vs z

- Dipoles also introduce x, p_x correlations with *E*
- Result: rotation and centroid shift of x, p_x longitudinal slices, increasing the projected ε_x

Measurement of CSR Effects

Studies of CSR effects are limited to **macro-scale** description of beam distribution:

– Projected ε_x growth

Does not resolve detailed beam structure!

Six-Dimensional Phase Space Reconstruction

Characterization of CSR at AWA

- Generate a beam influenced by CSR
- Resolve CSR effects on beam distribution using GPSR
- Argonne Wakefield Accelerator (AWA)

Beam Dynamics at AWA Double Dogleg

- Can we see CSR effects after double dogleg?
- Initial beam (ideal):
 - -1 nC, 43.4 MeV
 - $-\varepsilon_x = 25 \text{ mm mrad}$
 - -3 mm beam size, 1mm bunch length

Simulated CSR Effects: E - z and $x - p_x$

GPSR Training Data

GPSR Results: 2D Projections

Detailed $x - p_x$ **Phase Space Slices**

Ground truth d/×d $\varepsilon_{\chi} = 4.6 \text{ mm mrad}$ 0.0 -0.2 -0.40.6 0.4 $p_x/p \ (\times 10^3)$ 0.2 **Reconstruction** 0.0 $\varepsilon_{\chi} = 5.2 \text{ mm mrad}$ -0.2

12

Discussion

- Need of small emittance and energy spread to resolve CSR
 - -GPSR struggles to get correct slice rotations when going beyond $\varepsilon_x = 25 \text{ mm mrad}$ or under $\delta_E = 0.1\%$ at 1nC
 - It seems that beam parameters are achievable at AWA
- Longitudinal and transverse optics:
 - -Could compress beam at last dipole to promote CSR wake with larger beams:
 - Hardware: linac RF cavity phase to induce longitudinal chirp
 - -Could test transverse optics to change Twiss parameters:
 - Hardware: quadrupoles
- Define metrics to compare >2D beam distributions
 - How can we compare high-dimensional beam distributions quantitatively?

• AWA double dogleg can produce significant CSR effects

• Simulations show 6D GPSR can resolve CSR effects in the

$$\varepsilon_{\chi} = 25 \text{ mm mrad}, \sigma_{\chi} = 3 \text{ mm case}$$

Only 20 x-y beam profiles

-~10 min, 8 Gb GPU

- Need small ε_x and δ_E to resolve CSR effect
 - -Further study of transverse optics is necessary
- Future work:
 - -Experimental demonstration coming soon

Team

Ryan Roussel (SLAC)

(SLAC)

Seongyeol Kim (PAL)

Young-Kee Kim (UChicago)

Philippe Piot (NIU and AWA)

John Power (AWA)

This work was supported by:

- NSF award PHY-1549132, the Center for Bright Beams
- DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724 ٠

This work was supported by:

- NSF award PHY-1549132, the Center for Bright Beams
- DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

Backup: CSR effects after every dipole

Backup: CSR Effects at Diagnostics Spectrometer

Backup: OPAL CSR Settings

- CSR_FILTER:
- FILTER,
- TYPE = "Savitzky-Golay",
- NPOINTS = 20,
- NLEFT = 4,
 - NRIGHT = 4,
 - POLYORDER = 4;
- CSR_WK:
- WAKE,
- TYPE="1D-CSR",
- NBIN=300,
- FILTERS=CSR_FILTER;