Cheetah — A High-speed D1fterent|able
Beam Dynamics Simulation for

Machine Learnmg Applications --

4th' ICFA Machine Learning Workshop

Jan Kaiser, Chenran Xu, Annika Eichler and Andrea Santamaria Garcia
Gyeongju, 8 March 2024

HELMHOLTZ K.Ah\‘.(mlh.Tg @

This Talk

What is Cheetah? .

What can you do with it? &’

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia Page 2

What is Cheetah?

BT, et

Cheetah

pip install cheetah-accelerator

Python package for beam dynamics simulations based on
PyTorch for use with machine learning applications.

Two main features in support of ML applications:
» Ultra-fast compute: (at the cost of fidelity) Cheetah can run
order of magnitude faster than some other codes.
- Differentiability: Based on PyTorch, Cheetah supports S e
automatic differentiation for all its computations. [

= ParticleBeam.from_astra("beam_in.ini")

Drift(length=torch.tensor(0.2)),
. . . Quadrupole(length=torch.tensor(0.2), name="Q1"),
Incidentally, Cheetah provides full GPU support and integrates Drift(length=torch.tensor(0.4)),

H HI Quadrupole(length=torch.tensor(0.2
seamlessly with ML models built in PyTorch. Sttt e

Designed to be easy to use and easy to extend.
* We generally aim for high code quality!
« Black / isort code formatting + flake8 conformity enforced. SEdnicn SISO nc s eor (1
. . . . segment.Q2.kl = torch.tensor(-9.0
» Encourage proper procedures in GitHub repository (automatic
tests / PR templates, good documentation etc.)

beam_out = segment.track(beam_in)

https://github.com/desy-ml/cheetah

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia Page 4

https://github.com/desy-ml/cheetah

Elements and Beams

Element (accelerator.py)

» Subclasses represent accelerator components like drifts,
quadrupoles, steerers etc.
* Currently Cheetah supports 14 different element types

» Special element segment represents lattices (sequences)
of elements.
» Supports loading from LatticeJSON, Ocelot and Bmad

class Element(nn.Module):

def track(self, incoming: Beam) -> Beam:

return outgoing

Beam (particles.py)

» Subclasses implement different ways of representing
charged particle beams
* ParameterBeam for fast compute:

peR) Y e R™T

* ParticleBeam for more precision:

P e RVXT

class Beam(nn.Module):

@property

def emittance_x(self) -> torch.Tensor:

return result

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

Res

ults

Does Cheetah work?

Phase space through the ARES

Experimental Area

(a) Initial distribution

(b) Astra no sc

M~ ~ 1~ 1 T T
0.1F 1 F]
T
g 0.0 F ——————— - - -
TR
-0.1 F 1t]
C1 " " X 1 1 " " " " 1 1 n L
(c) Astra with sc (d) Cheetah
= 5= * L ¥ ° %] T * T
0.1F a4 1 []
= L
E L
£ o0f 1t]
=
-0.1 F w4 F %
o T R VI [BT VL
-0.5 0.0 05 =05 0.5
x (mm) x (mm)

50

100

150
Counts

200

250

Quadrupole magnet
magnet

Incomung eectron’ i

Steering

Steering Quadrupole magnet
magnet magnet
Quadrupole Cy Q3

Q2

[4
-

Camera looking
at diagnostic screen

..=(ir

Step compute times through the ARES Experimental Area

Code Comment Laptop HPC node
ASTRA space charge 264 000.00 3605 000.00
no space charge 109 000.00 183 000.00
Parallel ASTRA space charge 39000.00 17300.00
no space charge 16 900.00 12600.00
Ocelot space charge 22100.00 21700.00
no space charge 182.00 119.00
Bmad-X 40.50 74.30
Xsuite CPU 0.81 2.82
GPU - 0.57
Cheetah ParticleBeam 1.60 2.95
ParticleBeam + optimisation 0.79 0.72
ParticleBeam + GPU - 4.63
ParticleBeam + optimisation + GPU - 0.09
ParameterBeam 0.76 1.29
ParameterBeam + optimisation 0.02 0.04

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

Page 6

What can you do with it? -

Fast Reinforcement Learning

Transverse beam tuning at ARES

* Train a neural network policy to tune transverse beam parameters
on a diagnostic screen using five magnets (3 quadrupoles, 2
dipoles).

» Would require 3 years of beam time one the real machine, training
would take 11 days with Ocelot, takes ca. 1 hour with Cheetah.

* Deploy a RL-trained optimisation algorithm to the real-world with
zero-shot learning thanks to domain randomisation

» The trained policy outperforms other optimisation algorithms and

Steering
magnet
Duadrupo\e

Quadrupole

Incoming electron

expert human operators. P

0.5

Steerers

Quadrupole

Steering
magnet
Camera looking
at diagnostic screen

policy

% r g
K
RLtrained .~
. BO
o Target beam
” ‘ parameters

b Operator

T T T T T
: ~—— CV —— CH

-1.0
1.0

oy = (b, u, b/) =Au

0.5

Normalised actuator setting

Quadrupoles

Environment

—0.5

00}:3: E

“« Q3 failure

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

L L L L I L
20 30 40 50 60 70 80

0.0 B /\
—05 -\‘%—‘ 1 £ :
H 14 H
: 5] ‘/\
L L 1 L L L L ° 1 L
£
T T T T T o T T
: — a —] § : — o — gy
: Q2 1 &
[
[+1]

Step

Gradient-based Tuning

Loss

* Tune magnet settings or lattice parameters using the gradient of the 0 i

beam dynamics model computed through automatic
differentiation.

+ Seamless integration with PyTorch tools tuning neural networks.

Beam
parameter (mm)

» Becomes very useful for high-dimensional tuning tasks (see
neural network training).

(| N J
2
ares_ea.AREAMQZM1.kl = nn.Parameter(! a g
ares_ea.AREAMQZM2.k1l = nn.Parameter(! 2 ;
4 ares_ea.AREAMCVM1.angle = nn.Parameter ’g £
- ares_ea.AREAMQZM3.kl = nn.Parameter(! =) 5
@ ares_ea.AREAMCHM1.angle = nn.Parameter <2 H F
o @ —10
© < _ L
*é"é optimizer = Adam(ares_ea.parameters())
o5 i
tg = for _ in range(42): 0
S o ougoing = ares_ea.track(incoming) —~
= = % <
© O loss = loss_fn(outgoing) o0 &
S =)
® £ 8 -
(=} loss.backward() g, —10
optimizer.step() A oo [
Actuator / unknown variable optimizer.zero_grad() g
—20

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

Ha
Oy

@

Q2

50

" 1 "
100
Iteration

Gradient-based System Identification

Determine hidden system properties using the gradient of the
beam dynamics model computed through automatic
differentiation.

Seamless integration with PyTorch tools tuning neural networks.

Can be used in combination with gradient-based tuning.

ares_ea.AREAMQZM1.misalignment
ares_ea.AREAMQZM2.misalignment
ares_ea.AREAMQZM3.misalignment

nn.Parameter([0.0
nn.Parameter([0.0
nn.Parameter([0.0

optimizer = Adam(ares_ea.parameters())

for sample in dataset:
set_magnets(ares_ea, sample.magnets)
ougoing = ares_ea.track(incoming)
loss = loss_fn(outgoing, sample.measurement)

kiR t—

Deviation from target /
ground truth

loss.backward()
optimizer.step()
optimizer.zero_grad()

Actuator / unknown variable

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

y misalignment (mm)

x misalignment (mm)

@ Q2

623

1 L i n 1 "
100 200

. 1 i "
300

Epoch

" 1
400

" 1
500

Page 10

Physics-based Prior Mean for Bayesian Optimisation

* A physics-informed prior can help improve the performance

, oL FODO cell beam focusing example
of BO by preventing over-exploitation.

16F _ e e ~
- Cheetah’s differentiability allows efficient acquisition "‘ Simplex BO matched prior 1
function optimisation using gradient descent methods in 14 T BO =~ BO mismatched prior J
modern BO packages like BoTorch. 13 8]
» Has well-defined behaviour and does not need data to train l|__ . N L
1.0 f== Min. of mismatched prior -

like neural network priors.

» Can be used in combination with gradient-based system
identification to overcome model inaccuracies.

Beam size (mm

A

Objective value

Iteration

Model

Input variable
DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia Page 11

Integrate Modular Neural Network Surrogate Models

* Replace / augment Cheetah elements with neural network surrogates
trained on high-fidelity simulations or real data.

* Neural networks implemented in PyTorch are effectively native to

Cheetah. Differentiability is preserved. Integration is easy. Physical Surr%géthee\gtr:ﬁped Physical

« Example: Tracking with space charge through quadrupole 3 orders

of magnitude faster than Ocelot (370 microseconds). (X
class SCQuadrupole(Element):
—— Cheetah --- Neural - Ocelot simple —-— Ocelot space charge net = SCNet().load_state_dict(torch.load("weights.pth"))
— T T T T T T T T T — T T T T) - i
b (a)] [y (b)] \ (c) def track(self, incoming: Beam) -> Beam:
15EY — 150 by 0 . return self.net(incoming)
E) ' 3 \ =]
g 10F A 1 £ 100 F A 1 ‘
— : = "\ —
S 5f \\ ERE AN 1§ 5\
\‘e" == \\""‘- B ‘\\\.
ok : . --__I_——_.,.I.__,..__,._ 3 ok b] S S e—e=mma
AR T T T T TR T T T \ . T T T T
[d)] L&) 03 | f) 7] . .
_ Loopy & i b & AN @ bm (,U,, E) RQ [. :| bout (,U,, E)
i Y Y 02f S,]
2 o5l 4] % 5F &] % ._—:-‘:.‘;,__
;; \ 5 \\‘\ 01k N e ey i] -
\\\.,______ \\ C &
B T S e e S R S R (A e R B R B , SR — ASse
4 RO
(lQ, kQ) e
Energy [MeV] Energy [MeV] Energy [MeV]

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia Page 12

ICFA ML Contributions Using Cheetah

-
Applying Reinforcement Learning to Particle

Accelerators: An Introduction

Environment has Cheetah backend,
enabling us to see results quickly.

~N

0 100 200 300 400 500 600 700 aoy

-
Learning to Do or Learning While Doing:

Reinforcement Learning and Bayesian
Optimisation for Online Continuous Tuning

Cheetah-based environment en-
abled RLO policy training and
large scale evaluation.

_

Reinforcement Learning Based Radiation
Optimization at a Linear Accelerator

Another RL environment based on Cheetah enables fast

~N

training for CSR radiation
optimisation.

-4 -20 0 20 a0
\ zifs)

Reinforcement Learning for Intensity Tuning at
Large FEL Facilities

Cheetah enables gradient-based RL and 45x more
sample-efficient training for FEL tuning.

magnet init and Twiss

[Randomly sampled

-

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

Outlook

What’s next for Cheetah?

» The next big thing — Vectorised Cheetah
« Concurrent simulation of different actuator settings and beams
» About 50x faster on CPU, expected to be even faster on GPU
* Try it TODAY with PR Batched execution #116 on GitHub

;

B oy

+ We will continue to implement further elements and adapters, while
applying Cheetah to new applications.
» Contributions from the community are welcome!

» Explore Cheetah with JAX for further speed gains.

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

Conclusion

* What is Cheetah? .
* An easy-to-use Python package for fast and differentiable beam
dynamics simulations.
» Specifically designed for machine learning applications.

+ What can you do with it? &’

Gradient-based tuning /
system identification

ﬁ/ + Gradient-based

reinforcement
learning

€] Bayesian optimisation prior (b)

Objective value
Deviation from target /
ground truth

Model

Input variable Actuator / unknown variable

+ All the things you

(c) Reinforcement learning (d) Integrate module neural network surrogates come Up Wlth'

(2f] = s = 2[] g

El —H—8—n
L2t | L2t Lot |
Physical Surrogate wrapped Physical
= = in Cheetah

Environment

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

Contact

DESY. Deutsches Jan Kaiser
Elektronen-Synchrotron Machine Beam Controls (MSK)

jan.kaiser@desy.de
www.desy.de

mailto:jan.kaiser@desy.de

