Cheetah – A High-speed Differentiable Beam Dynamics Simulation for Machine Learning Applications

4th ICFA Machine Learning Workshop

Jan Kaiser, Chenran Xu, Annika Eichler and Andrea Santamaria Garcia Gyeongju, 8 March 2024

Questions

What is Cheetah? 🐆

What can you do with it? 🚀

What is Cheetah?

Cheetah

Linear Beam Dynamics Simulation Python Package

- <u>Python package for beam dynamics simulations based on</u> <u>PyTorch for use with machine learning applications.</u>
- Two main features in support of ML applications:
 - **Ultra-fast compute**: (at the cost of fidelity) Cheetah can run order of magnitude faster than some other codes.
 - **Differentiability**: Based on PyTorch, Cheetah supports automatic differentiation for all its computations.
- Incidentally, Cheetah provides full GPU support and integrates seamlessly with ML models built in PyTorch.
- Designed to be easy to use and easy to extend.
 - We generally aim for high code quality!
 - Black / isort code formatting + flake8 conformity enforced.
 - Encourage proper procedures in GitHub repository (automatic tests / PR templates, good documentation etc.)

https://github.com/desy-ml/cheetah

•••

pip install cheetah-accelerator

•••

Load initial beam distribution from ASTRA tracking beam_in = ParticleBeam.from_astra("beam_in.ini")

Elements and Beams

The basic structure of Cheetah

Element (accelerator.py)

- Subclasses represent **accelerator components** like drifts, quadrupoles, steerers etc.
 - Currently Cheetah supports 14 different element types
- Special element Segment represents lattices (sequences) of elements.
 - Supports loading from LatticeJSON, Ocelot and Bmad

Beam (particles.py)

- Subclasses implement different ways of representing charged particle beams
 - ParameterBeam for fast compute: $\boldsymbol{\mu} \in \mathbb{R}^7, \boldsymbol{\Sigma} \in \mathbb{R}^{7 \times 7}$
 - ParticleBeam for more precision: $P \in \mathbb{R}^{N \times 7}$

•••

Results

Does Cheetah work?

Phase space through the ARES Experimental Area

Step compute times through the ARES Experimental Area

Code	Comment	Laptop	HPC node
ASTRA	space charge	264000.00	3605000.00
	no space charge	109000.00	183000.00
Parallel ASTRA	space charge	39000.00	17300.00
	no space charge	16900.00	12600.00
Ocelot	space charge	22100.00	21700.00
	no space charge	182.00	119.00
Bmad-X		40.50	74.30
Xsuite	CPU	0.81	2.82
	GPU	-	0.57
Cheetah	ParticleBeam	1.60	2.95
	ParticleBeam + optimisation	0.79	0.72
	${ t ParticleBeam}+{ ext{GPU}}$	-	4.63
	ParticleBeam + optimisation + GPU	-	0.09
	ParameterBeam	0.76	1.29
	${\tt ParameterBeam} + {\rm optimisation}$	0.02	0.04

What can you do with it?

Fast Reinforcement Learning

Transverse beam tuning at ARES

- Train a neural network policy to **tune transverse beam parameters** on a diagnostic screen using **five magnets** (3 quadrupoles, 2 dipoles).
- Would require **3 years of beam time** one the real machine, training would take **11 days with Ocelot**, takes ca. **1 hour with Cheetah**.
- Deploy a RL-trained optimisation algorithm to the **real-world** with **zero-shot learning** thanks to **domain randomisation**

RLO in ARES EA (including feedback)

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

Gradient-based Tuning

Transverse beam tuning at ARES

- Tune magnet settings or lattice parameters using the **gradient of the beam dynamics model** computed through **automatic differentiation**.
- Seamless integration with PyTorch tools tuning neural networks.
- Becomes very useful for high-dimensional tuning tasks (see neural network training).

•••

ares_ea.AREAMQZM1.k1 = nn.Parameter(0.0)
ares_ea.AREAMQZM2.k1 = nn.Parameter(0.0)
ares_ea.AREAMQZM1.angle = nn.Parameter(0.0)
ares_ea.AREAMQZM3.k1 = nn.Parameter(0.0)
ares_ea.AREAMCHM1.angle = nn.Parameter(0.0)

optimizer = Adam(ares_ea.parameters())

for _ in range(42):
 ougoing = ares_ea.track(incoming)
 loss = loss_fn(outgoing)

loss.backward()
optimizer.step()
optimizer.zero_grad()

Gradient-based System Identification

Quadrupole misalignments in the ARES Experimental Area

- Determine hidden system properties using the gradient of the beam dynamics model computed through automatic differentiation.
- Seamless integration with PyTorch tools tuning neural networks.
- Can be used in combination with gradient-based tuning.

Actuator / unknown variable

•••

ares_ea.AREAMQZM1.misalignment = nn.Parameter([0.0, 0.0]) ares_ea.AREAMQZM2.misalignment = nn.Parameter([0.0, 0.0]) ares_ea.AREAMQZM3.misalignment = nn.Parameter([0.0, 0.0]) optimizer = Adam(ares_ea.parameters()) for sample in dataset: set_magnets(ares_ea, sample.magnets) ougoing = ares_ea.track(incoming) loss = loss_fn(outgoing, sample.measurement) loss.backward() optimizer.step() optimizer.zero_grad()

Physics-based Prior Mean for Bayesian Optimisation

Combine Cheetah with BO

- A physics-informed prior can help **improve the performance** of **BO** by preventing over-exploitation.
- Cheetah's differentiability allows efficient acquisition function optimisation using gradient descent methods in modern BO packages like BoTorch.
- Has well-defined behaviour and **does not need data** to train like neural network priors.
- Can be used in **combination with gradient-based system identification** to overcome model inaccuracies.

FODO cell beam focusing example

DESY, Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

Integrate Modular Neural Network Surrogate Models

Increasing Cheetah's fidelity with surrogate models than can be reused

- Replace / **augment Cheetah** elements with neural network surrogates trained on high-fidelity simulations or real data.
- Neural networks implemented in PyTorch are effectively **native** to Cheetah. **Differentiability** is preserved. Integration is **easy**.
- Example: **Tracking with space charge** through quadrupole 3 orders of magnitude faster than Ocelot (**370 microseconds**).

<pre>class SCQuadrupole(Element): net = SCNet().load_state_dict(torch.load("weights.pth")) def track(self, incoming: Beam) -> Beam: return self.net(incoming)</pre>
$\boldsymbol{b}_{\mathrm{in}}\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\right) R_{Q}\left[\cdot\right] \xrightarrow{\oplus} \boldsymbol{b}_{\mathrm{out}}\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\right)$ $(l_{Q},k_{Q}) \Delta\Sigma_{\mathrm{SC}}$

ICFA ML Contributions Using Cheetah

Many other utilities

Applying Reinforcement Learning to Particle Accelerators: An Introduction

Environment has Cheetah backend, enabling us to see results quickly.

Learning to Do or Learning While Doing: Reinforcement Learning and Bayesian Optimisation for Online Continuous Tuning

Cheetah-based environment enabled RLO policy training and large scale evaluation.

Reinforcement Learning Based Radiation Optimization at a Linear Accelerator

Another RL environment based on Cheetah enables fast training for CSR radiation optimisation.

Reinforcement Learning for Intensity Tuning at Large FEL Facilities

Cheetah enables gradient-based RL and 45x more sample-efficient training for FEL tuning.

Outlook

What's next for Cheetah?

- The next big thing \rightarrow Vectorised Cheetah
 - Concurrent simulation of different actuator settings and beams
 - About 50x faster on CPU, expected to be even faster on GPU
 - Try it TODAY with PR Batched execution #116 on GitHub

- We will continue to implement **further elements and adapters**, while applying Cheetah to **new applications**.
 - Contributions from the community are welcome!
- Explore Cheetah with JAX for further speed gains.

DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia

Conclusion

Answers to our questions

- What is Cheetah? 🐆
 - An easy-to-use Python package for fast and differentiable beam dynamics simulations.
 - Specifically designed for machine learning applications.
- What can you do with it?

- DESY. Cheetah | 4th ICFA Machine Learning Workshop | Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia
- Use Cheetah 584

Contact

DESY. Deutsches Elektronen-Synchrotron

Jan Kaiser Machine Beam Controls (MSK) jan.kaiser@desy.de

www.desy.de