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Laser-wakefield acceleration
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Main advantage: 
~ 50 GeV/m accelerating gradient

Plasma-based acceleration: an emerging acceleration technology

Laser pulse
followed by
an electron beam

Plasma
Propagating 
laser pulse

Trailing accelerated
electron beam

Laser-driven wake

Background 
plasma electrons
(from ionized gas)

Can be modeled with Particle-In-Cell (PIC) simulations

Accelerated
electron beam



Example of design optimization: beamloading in a plasma accelerator

• Simulation-based design optimization is a common workflow for 
plasma-based acceleartors

• Example in this presentation: beamloading optimization
Tune the current profile to maximize beam quality after acceleration

• Bayesian optimization is an efficient optimization method.
Here we use multi-fidelity Bayesian optimization.
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• 4 input parameters that parametrize the initial delay and 
current profile of  the beam

• Single objective function:
(quantifies beam quality)

In:
current profile
of the beam

Out:
beam quality



Multi-fidelity Bayesian optimization

Intuitive idea:

• inexpensive, low-fidelity simulations 
for broad parameter exploration

• expensive, high-fidelity simulations 
for few, well-targeted simulations

Different fidelities may mean:
- Different resolutions
- Different geometries (e.g. cylindrical vs full 3D)
- Different approximations (e.g. quasi-static vs full PIC)

Quantified by a fidelity parameter s, which is passed to the (modified) 
GP, along with x (tuning parameters), for each point

FBPIC (“high-fidelity”, s=1) 

• Full-PIC
• On the example setup:

~45 min per simulation, 
on 1 GPU

Wake-T (“low-fidelity”, s=0) 

• Quasistatic + laser envelope
• On the example setup:

~5 min per simulation, 
on 1 CPU core

See Axel Huebl’s presentation on Thursday 5:40 PM regarding models with different fidelities 



Multi-fidelity optimization requires a fidelity-aware Gaussian process

• Automatically evaluates the level of correlation 
between low-fidelity and high-fidelity data

• When strongly-correlated: can use low-fidelity 
data to inform predictions on high-fidelity data

Low uncertainty,
despite the 
absence of 
high-fidelity data

High uncertainty ;
low-fidelity data 
is ignored

Un-correlated case:Strongly-correlated case:

Data from low-
fidelity model

Data from high-
fidelity model

GP

Prediction for low-
fidelity model

Prediction for high-
fidelity model



Multi-fidelity optimization requires a fidelity-aware Gaussian process

Low uncertainty,
despite the 
absence of 
high-fidelity data

Strongly-correlated case:

Data from low-
fidelity model (s=0)

Data from high-
fidelity model (s=1)

GP

Prediction for low-
fidelity model

Prediction for high-
fidelity model

• The input space for the GP contains both 
x (tuning parameters) and s (fidelity)

• The kernel is usually assumed to be separable

• The lengthscale hyperparameter of 𝜅̃ quantifies 
how correlated the different fidelities are, 
and is automatically tuned during 
hyperparameter optimization

e.g. Bonilla, Multi-task Gaussian Process 
Prediction, NeurIPS (2007)



The components of a multi-fidelity Bayesian optimization

• Fidelity-aware Gaussian Process
e.g. Bonilla, Multi-task Gaussian Process 
Prediction, NeurIPS (2007)

• Procedure to suggest which points to evaluate (i.e. simulate) next, and at which fidelity 
Recent work using multi-fidelity Bayesian optimization in plasma-based acceleration:

Data from low-
fidelity model

Data from high-
fidelity model

GP

Prediction for low-
fidelity model
Prediction for 

high-fidelity model

• Dynamic selection of the fidelity for each simulation:
F. Irshad et al., Multi-objective and multi-fidelity Bayesian optimization of 
laser-plasma acceleration, PRR (2023)

• Batches of fixed numbers of low-fidelity and high-fidelity simulation (our work):
A. Ferran-Pousa et al., Bayesian optimization of laser-plasma accelerators 
assisted by reduced physical models, PRAB (2023)

See also: R. Roussel et al., Bayesian Optimization Algorithms for Accelerator Physics, arXiv:2312.05667 (2023) 



The multi-task Bayesian optimization algorithm 
alternatively runs high and low-fidelity simulations.

• Repeatedly runs fixed-size batches of: 
- n1 low-fidelity simulaRons
- n2 high-fidelity simulaRons
(here n1=90, n2=3)

• SimulaRons are evaluated at the most promising points
in parameter space, accordingly to the predicRons of 
the GP predicRon for the high-fidelity

• The model itself is updated aXer each batch

Algorithm: 
Swersky et al., NeurIPS (2013)
Letham et al., arxiv 1904.01049 (2019)
(implemented in the Ax package)

Orchestration of the simulations is done via optimas
github.com/optimas-org/optimas



Multi-fidelity Bayesian optimization can be significantly faster.

• 4 input parameters that parametrize 
the longitudinal beam profile, 
in order to optimize beamloading

• Objective function: f / Q⇥ E
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(6 independent run in each case, with different random seeds)



Optimization is robust when low-fidelity does not match high-fidelity.

High-fidelity: 
FBPIC, fixed resoluRon

Low-fidelity: 
Wake-T, varying resoluRon



Caveat: generating next points can take a significant time

• Here: GP and acquisition function evaluated 
on a GPU (Ax implementation)

• Theoretical scaling for training the GP ∝ 𝑁!

where N is the number of datapoints collected so far

White gaps: time it takes for the algorithm
to decide which points to evaluate in the next batch



Conclusion

• Multi-fidelity Bayesian optimization can make use of inexpensive, 
low-fidelity simulations to accelerate optimization

• Anecdotal evidence seems to indicate that it is relatively 
robust when low-fidelity and high-fidelity don’t match

• Cost of fitting the GP and optimizing the acquisition function
can be become a bottleneck when using a large amount of low-fidelity data



Next step: use multi-fidelity Bayesian optimization 
(and other ML models) for simulation-aided optimization of experiments

Berkeley Lab Laser Accelerator (BELLA) Center
Experiments with Terawatt and Petawatt lasers

Accelerator Modeling Program
Modeling with large-scale 
Particle-In-Cell simulations

Simulation data

Experimental 
data

ML

Automated

feedback

Recently received funding as part of 2024 LDRD at LBNL

We welcome ideas and collaboration on efficient 
combination of experimental and simulation data!
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This material is based upon work supported by the CAMPA collaboration, a project of the U.S. 
Department of Energy, Office of Science, Office of Advanced Scientific Computing Research and Office 
of High Energy Physics, Scientific Discovery through Advanced Computing (SciDAC)

Thank you for your attention!


