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A. Ferran-Pousa et al., Bayesian optimization of laser-plasma
accelerators assisted by reduced physical models, PRAB (2023)

F¥<§ U.S. DEPARTMENT OF Office of

A e ATAPY) {9/ ENERGY | scinc:

BERKELEY LAB




Plasma-based acceleration: an emerging acceleration technology

Propagating
laser pulse
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followed by _: -\Iectron beam . il | plasma electrons

(from ionized gas)
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Trailing accelerated Laser-driven wake

Main advantage: electron beam
~ 50 GeV/m accelerating gradient

Can be modeled with Particle-In-Cell (PIC) simulations
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Example of design optimization: beamloading in a plasma accelerator

« Simulation-based design optimization is a common workflow for

plasma-based acceleartors In:

current profile Out: ,
of the beam beam quality
« Example in this presentation: beamloading optimization
Tune the current profile to maximize beam quality after acceleration
* 4 input parameters that parametrize the initial delay and
current profile of the beam ———— T
p 40 | \qi‘_\ {250 § Ng
(BY . %5 & =)
» Single objective function: [ x Qx b 20|20 | <
(quantifies beam quality) OFE _ ‘ m _
g o B ﬁ \‘ FBPIC 1% s
« Bayesian optimization is an efficient optimization method. 7 g
Here we use multi-fidelity Bayesian optimization. e | ﬂ — °
Az [um]
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Multi-fidelity Bayesian optimization

Intuitive idea: Different fidelities may mean:
- Different resolutions
. inexpensive, low-fidelity simulations - Different geometries (e.g. cylindrical vs full 3D)
* expensive, high-fidelity simulations
for few, well-targeted simulations Quantified by a fidelity parameter s, which is passed to the (modified)

GP, along with x (tuning parameters), for each point

e — 15
20 (82 — 0 <&
e Full-PIC E Y e “ — lzm e Quasistatic + laser envelope
* On the example setup: B ' WakeT ) 11 * On the example setup:
~45 min per simulation, s ' _zo~ ~5 min per simulation,
on 1GPU w0} o { ﬂ io% on 1 CPU core
120 -100 -80 60 40 20 0

Az [um]

See Axel Huebl’s presentation on Thursday 5:40 PM regarding models with different fidelities
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Multi-fidelity optimization requires a fidelity-aware Gaussian process

Data from low-
fidelity model

fidelity model

Data from high- =

Strongly-correlated case:
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Prediction for high-
fidelity model

Low uncertainty,
despite the
absence of
high-fidelity data

Objective function f

Prediction for low- .
ad  fidelity model

Automatically evaluates the level of correlation
between low-fidelity and high-fidelity data

When strongly-correlated

: can use low-fidelity

data to inform predictions on high-fidelity data

Un-correlated case:

® Low-fidelity data
® High-fidelity data

_ High uncertainty ;
low-fidelity data
is ignored

o] (5]
0.0 0.2 0.4 0.6 0.8 1.0
Input x;

b U.S. DEPARTMENT OF

Office of

BERKELEY LAB

ACCELERATOR TECHNOLOGY & )
APPLIED PHYSICS DIVISION A , A PDD

.9)ENERGY

Science



Multi-fidelity optimization requires a fidelity-aware Gaussian process

Data from low-

) .
Prediction for low-
fidelity model (s=0) = = fidelity model

Objective function f

Data from high-
fidelity model (s=1) =

Prediction for high-

fidelity model

—

Strongly-correlated case:

® Low-fidelity data

® High-fidelity data Low uncertainty
)

despite the

L

absence of
o o high-fidelity data
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The input space for the GP contains both
x (tuning parameters) and s (fidelity)

The kernel is usually assumed to be separable
k((saw)7 (S,a .’I:’)) — ’%(“S - SIH)K,(:B, :B')

The lengthscale hyperparameter of £ quantifies
how correlated the different fidelities are,

and is automatically tuned during
hyperparameter optimization

e.g. Bonilla, Multi-task Gaussian Process
Prediction, NeurlPS (2007)
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The components of a multi-fidelity Bayesian optimization

)
Data from low- Prediction for low-
fidelity model jmmd omd  fidelity model
Data from high- Prediction for
fidelity model [ =\ el i eck]

* Procedure to suggest which points to evaluate (i.e. simulate) next, and at which fidelity
Recent work using multi-fidelity Bayesian optimization in plasma-based acceleration:

* Fidelity-aware Gaussian Process
e.g. Bonilla, Multi-task Gaussian Process
Prediction, NeurlPS (2007)

 Dynamic selection of the fidelity for each simulation:
F. Irshad et al., Multi-objective and multi-fidelity Bayesian optimization of
laser-plasma acceleration, PRR (2023)

« Batches of fixed numbers of low-fidelity and high-fidelity simulation (our work):
A. Ferran-Pousa et al., Bayesian optimization of laser-plasma accelerators
assisted by reduced physical models, PRAB (2023)

See also: R. Roussel et al., Bayesian Optimization Algorithms for Accelerator Physics, arXiv:2312.06667 (2023)
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The multi-task Bayesian optimization algorithm

alternatively runs high and low-fidelity simulations.

Al ith Initialization Optimization .
SWEI’Sky et G/. NeurlPS (2013) 300 o Simulation (Wake-T) Cumulative best (Wake-T) ° |
g . e Simulation (FBPIC) == Cumulative best (FBPIC) <
Letham et al., arxiv 1904.01049 (2019) 250 b i
(implemented in the Ax package) i g 2 0 M
200 B i T $ ] 8 o, ° o 3 o
g i I S S IR AT B
* Repeatedly runs fixed-size batches of: 510l b4 ) o g g 8¢ %% o
- n, low-fidelity simulations 5 i EF ok Y E = E ||
- n, high-fidelity simulations © 100t {- & - ; : SR T § 5
| 8 0 a %
(here n,;=90, n,=3) | A - T I A g
e
* Simulations are evaluated at the most promising points ol é ] ; - T (@) |
in paramete-r s-pace, accord.lngly. toI’Fhe predictions of o A : . 10 P 12 T6
the GP prediction for the high-fidelity Run time [h]
« The model itself is updated after each batch Orchestration of the simulations is done via optimas

#*  github.com/optimas-org/optimas
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Multi-fidelity Bayesian optimization can be significantly faster.

4 input parameters that parametrize
the longitudinal beam profile,
in order to optimize beamloading

20

300
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Objective function: X ——
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(6 independent run in each case, with different random seeds)
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Optimization is robust when low-fidelity does not match high-fidelity.

High-fidelity: 300 ¢ — 1
FBPIC, fixed resolution
250 i
Low-fidelity: ' —Ar ]
Wake-T, varying resolution g 2001 2 2007 | o
S m
) =
D i - | i
= 150 Wake-T resolution: 0 -
o —— lint 'I; © — dr=k;/20, dz = Trwm/40 | Al ]
250 3 ] : i 'G R g | ot
(D? . 225 @ 15 E 100 — dr: kp_l/lo’ dz = TFWHM/ZO g 500 ,,/’ ///'
| i‘; c - dr= k;l/S, dz = Trwum/10 q‘u—:' fé}/’, /z/u
E FBPIC 2 5 o 1L 14
2 wake| | {1 " 50 dr=k;'/2.5, dz = Trwpm/5 0k e '
b _ T 0 500 O 500
0 | == Single fidelity
- OF f [Wake-T] f [Wake-T]
10 © 0 25 50 75 100 125 150 175
-120 =100 -80 A/—‘i?". -40 =20 0 Run time [h]
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Caveat: generating next points can take a significant time

Initialization Optimization .
__.,__,___-,___-_______—__ﬁ-_____l:
300 o Simulation (Wake-T) Cumulative best (Wake-T) °
Here: GP and acquisition function evaluated o) =lntiaken CERI Ol Iy | Chmuktiveleest (ERI) °
. . 250 | | : 5
on a GPU (Ax implementation) ; a
! 3 !
Theoretical scaling for training the GP « N3 S IR HATE AR
where N is the number of datapoints collected so far § 1°97] ¢ : ° “ bl
a ro e° og 8 o o e
© 00t |- § - o 3 E S
| - § 8 S
: o 0 8 e E g B g
$o 8 e
50 B S o E g E E g
E o E 8 : 8 E
E : ‘ i ° (a)
op & . . . A L A x A
0 2 4 6 8 10| 12 4 16
Run time [h]

White gaps: time it takes for the algorithm
to decide which points to evaluate in the next batch
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Conclusion

* Multi-fidelity Bayesian optimization can make use of inexpensive,
low-fidelity simulations to accelerate optimization

* Anecdotal evidence seems to indicate that it is relatively
robust when low-fidelity and high-fidelity don’t match

* Cost of fitting the GP and optimizing the acquisition function
can be become a bottleneck when using a large amount of low-fidelity data
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Next step: use multi-fidelity Bayesian optimization

(and other ML models) for simulation-aided optimization of experiments

Recently received funding as part of 2024 LDRD at LBNL
Simulation data |4

We welcome ideas and collaboration on efficient
Experimental = combination of experimental and simulation data!
data

Accelerator Modeling Program
Modeling with large-scale
Particle-In-Cell simulations

Berkeley Lab Laser Accelerator (BELLA) Center
Experiments with Terawatt and Petawatt lasers

Automated
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