
Machine Learning for Improving Accelerator 
and Target Performance 

ORNL is managed by UT-Battelle, LLC for the US Department of Energy
JLab is managed by Jefferson Sc. Assoc., LLC for the US Department of Energy

Machine Learning for prognostics and 
optimization of particle accelerators
Machine Learning at Spallation Neutron 
Source (SNS), Oak Ridge National Lab (ORNL)

Kishansingh Rajput
Collaborators: W. Blokland, A. Zhukov, D. Winder, M. Schram, P. Ramuhalli, C. Peters, R. Vilalta, Y. 
Alanazi, A. Kasparian, D. Brown, C. Long, B. Cathey, D. Winder, M. Edwards, C. Elliott, G. Gallimore, 
M. Bryan, C. Pappas, K. Ruisard, J. Rye, S. Thomas, X. Zhao, G. Milanovich, J. Walden,  S. Cousineau

This work was supported by the DOE Office of Science, United States under 
Grant No. DE-SC0009915 (Office of Basic Energy Sciences, Scientific User 
Facilities program).



2

Outline
o Overview of Machine Learning at SNS for Prognostics and Optimization

o Infrastructure

o Beam Loss Optimization

o Target System Anomaly Reporting and Feedback 

o Errant Beam Prediction using Machine Learning
v Sensors and Data Collection

v Data Curation

v Beam Configuration and drift in the data

v Conditional ML Models

v Continual Learning and UQ
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Overview



4

Overview
• Spallation Neutron Source (SNS) 

accelerator at Oak Ridge National 
Lab delivers 1.4 MW of a 1 GeV 
pulsed beam at 60 Hz (1.3 MW of 
2.8 GeV after recent upgrade)

• Ongoing work on anomaly 
prediction, reporting and feedback 
system for errant beams and target 
systems using Machine Learning 
(ML) algorithms to reduce 
downtime

• ML based controls algorithms are 
being explored for beam loss 
tuning optimization

• Infrastructures to support long term 
ML lifecycles deployment are 
being developed
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AP physics model
works with one bunch, 
doesn’t have halo details

Loss monitor
sees 1 ms

Beam loss Optimization
Goal: Reduce beam losses 
Timescale: Minutes, 1GB/year
Sensors and Actuators: > 100 Loss monitors 
and magnets
Approach: Reinforcement Learning;
Use virtual accelerator and safety limits 
to test safety of algorithms

Example of beamline activation due 
to losses

Measured beam losses lead to 
activation

Talk - From Physics Study to Operations 
by Carrie Elliott
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Target System Anomaly Prediction 

• Operates with ~1400 L of liquid mercury
– ~20 tons of mercury
– Mercury circulates through the loop about once a minute
– 4 slpm of helium gas injected at the target module

• Set it and forget it
– Loop is intended to run at a constant pump speed and gas flow rate

Target
Module

Hg Pump 
Motor

Heat Exchanger

Mercury Storage 
Tank

Transfer Valve

Supply Pipes (3)

Return Pipe (1)

Hg Pump 
Tank

Goal: Reduce downtime due to target
Timescale: Minutes
Sensors and Actuators: Flow, Pressure, 
Temperature and PID controllers’ valve and 
motors
Approach: Use archived and real-time data 
to train for anomalies, generate reports and 
alert for anomalies
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Errant Beam Prediction

BPM

DCM

BPM data

ML Model Anomaly Prediction, 
Uncertainty

MPS anomaly Labels Clustering Fault Classification

Beam Configuration

Goal: Predict and prevent Errant beam pulses
Timescales: µsecs to 15 ms, stream: +100Mb/s
Sensors and Actuators: 1x Current Monitor and 30+ Beam Position Monitors
Approach: Use continual learning ML (Siamese and VAE) models to detect precursor and abort beam 
(FP must be very low <0.2%)

ML 
Model

Latent 
Representation
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Sensors and Data Collection
• SNS employs a DCM to protect the Super Conducting Linac (SCL)

• Continuously monitors upstream and downstream beam current waveforms to detect any loss

• FPGA and dedicated communication line with Machine Protection System (MPS)

• DCM can be programmed to store all the beam current waveforms

• Previous studies showed precursors are present in pre-fault data to indicate upcoming fault

• In addition, beam 
configuration settings are 
also store associated with 
these waveforms

• We are also looking into 
possibility of using Beam 
Position Monitor (BPM) data 
together with DCM data to 
improve the accuracy 
further
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Data Curation
• Pre-cursors in the normal (pre-fault) beam current data

• Enables prediction of faults (Prediction not detection!)

• Label normal data immediately before fault as 1 

• All other normal data instances labeled as 0

FaultPreceding 
fault

Normal

Marked as anomaly in 
training data

Marked as normal 
(including all the 
preceding samples until 
previous fault)Reference Normal Pulses

Pre-fault Pulses

Input to Siamese Model
Different Combinations of Normal to 
Normal (labeled 0) and Normal to 

“Before” pulses (labeled 1)

1

0

0

1

Shared weights 
and biases

Siamese Model

(Not used)
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Data Drift
Drift due to measurable parameters
• Beam configuration are tuned continuously
• Changes in the config parameter à changes 

distribution of the beam current waveforms

Different colors represent different beam configuration settings

Drift due to non-measurable parameters
• Machine degradation, aging, maintenance, Equipment 

replacement etc. cause data distribution to change
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ML Models
• Similarity based models can correctly classify unseen anomalies. Ex Siamese model, AE, VAE etc.

• Siamese Neural Network (SNN), and VAE to predict anomalies

• SNN learns twin embedding models to transform inputs into a latent space

• Distance measures are applied at latent space to compute the similarity 

Residual Network Residual Network

Difference Function
Custom layer

MLP (process difference
vector)

Output Layer

Reference Input Inference Input

Similarity Score

Shared
weights

(GPA)

Beam Config

MLP

Concatenate

Do we account for drifts due to known 
parameters?
• Beam configurations as Conditional input
• Conditional SNN (CSNN) and Conditional VAE (CVAE)

• Potentially learn any cross-correlations between 
beam current data from different configs

Can the model adapt to distribution drifts due 
to non-measurable parameters?
- Work in progress to leverage developments in 
Continual Learning domain
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Results
Evaluation Metric
• Total downtime should not be increased by false alarms

• Maximum number of possible anomalies should be 
predicted before they occur

• Goal: Maximize True Positive Rate (TPR) while keeping 
False Positive Rate (FPR) below 0.1%

CSNN vs CVAE vs SNN
• Model architectures were selected after a HPO and NAS

• 10 Trials to provide statistically robust comparison
• CSNN outperforms both SNN and CVAE
• CVAE has 10 times more learnable parameters than CSNN

Inference Time
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Continual Learning

Logging 
and 

Monitoring

Model Re-
training 
Triggers

Data 
Preparation

Offline 
Model 

Training and 
Evaluation

Deployed 
Model

Data

Predictions

Sensors

Inference 
and 

Feedback 
setup

Continual 
Learning 

setup in the 
outer loop

• Model performance degrades when data 
distribution changes

• Defining Triggers for model re-training is challenging

• Sudden drifts due to config changes à include 
new config data in training set

• Gradual drifts due to non-measurable parameters 
à Continual Learning

• Model performance based triggers are most valued

• When aborted – no information whether it was right!

• Uncertainty Quantification can help defining re-
training triggers

• Distance aware uncertainty goes up à Model 
is less confident as data is out of distribution

• Catastrophic forgetting is a big issue to address
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Conclusion
• Machine Learning is being deployed at SNS accelerator for anomaly prediction and optimization
• Conditional Siamese Models and Conditional VAEs are deployed to predict errant beams
• Beam Current Waveforms are used to predict upcoming anomalies
• Conditional Siamese Model outperforms 

a) Conditional VAE Siamese Models 
b) Siamese model trained on single beam configuration data

• Data drifts due to both measurable (beam config) and non-measurable (machine degradation, 
equipment replacement etc.) parameters

• Model performance degrades when data drifts
• Continual Learning is being explored to tackle data drifts

Principle Investigators
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Malachi Schram (schram@jlab.org)

Use case lead
Anomaly Prediction and Continual Learning
Kishan Rajput (Kishan@jlab.org)
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