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Alternating Gradient Synchrotron (AGS) and its
Booster serve as part of the injector compound

for RHIC and future EIC
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Desired Result: higher proton polarization 2 Siberan Stakesfing

Spin flipper

From the source to high energy RHIC experiments, 20%
polarization is lost.

Polarized luminosity for longitudinal collisions scales with P4
(a factor of 2 reduction!)

Spin Rotators
(longitudinal polarization)

. «— Helical Partial
Siberian Snake

The proton polarization chain depends on delicate Pol. H' Source
accelerator settings form Linac to the Booster, the AGS, and
the RHIC ramp.

Currently, the injector compound is largely hand-tuned by Polarimetry available at:

operators * Source
» End of Linac (200 MeV)

* AGS extraction

. . . . . Max Pol. At Max Polarimeter .. .
Polarization is a high-impact - Energy | Energy [%] - * RHIC injection energy
[GeV] * RHIC flattop

would be a significant
achievement!

challenge to address Sl T 82-84
Biosmr 22'5 ~870'784 Relative Ramp Polarization
Even 5% more polarization es 38 o770 p-Carbon Loss
RHIC 255 55-60 Jet, full store avg* (Run 17, full run avg)
AGS

17 %
RHIC 8 %

Loss in polarization along the chain
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What is needed to improve polarization?

 Figure-of-merits (FOM) for the project
(“experimental outputs”): emittance, beam
intensity, polarization

» Trade-offs in optimizing
» Emittance | Beam intensity T Polarization 1

» Trade-offs between cc
* Beam intensity T —» Emlttance T

* Emittance T —» Polarization |

* Main areas to optimize:
» Booster injection / capture
* AGS bunch splitting / merging scheme
» AGS spin resonance compensation
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Tasks that can aid polarization: W
Improvements to

Online model

: : , _ simulation model
(1) Emittance reduction (beam density preservation)

(2) Synchronize accelerator components at

calibrated to
data

(
L

depolarizing resonance crossings

~

(3) Minimize depolarizing resonance strengths

Strategy:

Establish more accurate models for Booster and
AGS to better understand and predict how beam
behaves in the rings.

Develop more streamlined tuning
routines so desirable beam status can be
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obtained more efficiently.

] ] . ] Bayesian
Project brings together techniques in AIML to optimization of
target the key areas where polarization can be settings

Fast reinforcement

improved

learning controls

Different sub-systems have different needs (e.g. fast corrections vs.
high-level optimization of settings)



Emittance reduction — less depolarization

» Optimize Linac to Booster transfer
» Optimize Booster to AGS transfer

» Optics and orbit correction in Booster
and AGS

» Beam-based alignment & calibration
from orbit response in Booster and AGS

* Bunch splitting in the Booster for space
charge reduction and bunch
re-coalescing at AGS top energy

2 Siberian Snakes/ring
Spin flipper

. Spin Rotators
(longitudinal polarization)

LINAC BOOSTER

% < Helical Partial
Siberian Snake

"AGS Polarimeter
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Integrated ML Approach for Polarization Improvement

Data-model Integration Scientific Machine Learning

Include constraints for
physics process in surrogate
model training

Solve inverse problem for
unknown model parameters

“Soft” constraints as an
objective penalty

Learn data-driven model

Optimization with linear constraints

A~ __ Measureq __Calibrate
'9 s Mingep, f(x) s.t. c.(x) <0 Vrell,.,R]
- st Objective and constraints as GPs
n(x;0) GP(n(x).2(x)) | N(0.0%)
L — *Output + Diserepency . Emor Integrate the feasibility through the CDF

Accelerator
Control 2y 8(x)
Parameters
Computational Model

(Simulator)

Calibrated hiah-fidelitv simulation z;+8(x) +e€
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Optimization Under Uncertainty
and Fast ML-based Control

Bayesian optimization with
priors from system models

Reinforcement learning

trained with system model

Prior Posterior




Ta rg et Al'e as a n d S u b 'p rOj GCtS Merge of AGS proton bunches at flattop

(a) Optimize Booster injection
(b) Optimize AGS injection

(c) Booster model calibration
(d) AGS model calibration

(e) Bunch splitting/coalescing

(f) Timing _
P Y " Spin resonance terms
T i SN , from skew quads in AGS
(g) Resonance minimization _ AN _
s R RN ) 0.005
. L . | @\Q&;\
(h) Combined and verified evaluation of - | 126° b P
existing emittance measurements il . bendj ’\ 4 o000
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Tasks range from being highly approachable with existing AIML techniques to challenging
new use cases requiring R&D



Booter injection/capture optimization

Booster injection/early acceleration process sets
maximum beam brightness for rest of acceleration
though RHIC

Linac pulse of 300 us, H- beam ~6-9x1011 protons,
strip through a carbon foil. Intentional horizontal and
vertical scraping reduce emittance (and intensity) to

RHIC requirements ~2.5x1011 protons

Controls: Linac to Booster (LtB) transfer line optics,
beam size on ionization foil

Goal: minimize beam loss at scraper

Method: Bayesian Optimization

Progress: Set up injection model including foil, create
interface for optimization

*\ Teledyne LeCroy WR104MXi-A

I69°

From Linac

9 o
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2+ 0HD




Linac to Booster transfer

Parameters to vary:
* Transfer line steers
» Main Booster dipole field

* Booster beta wave (stop-band quadrupoles) for tune
toward %2 and minimum on the foil

* Last two linac phases
* Injection bump elements and their time profile

» Scraper amplitudes

Observables to optimize:
* Transfer efficiency linac — Booster early ramp

* Emittance from multi wires of the AGS transfer line

AGS injection optimization

Parameters to vary:
» Transfer line steerers

* Main AGS dipole field, RF phase, injection
bumps, tunes.

* Horizontal orbit in the snakes and their optics
and orbit correction.

Observables to optimize:
* Transfer efficiency Booster — AGS early ramp

* Emittance from two IPMs



Booster injection optimization using Xopt

PS current [A]

BO algorithm to maximize beam intensity after scraping by tuning Linac to Booster

(LtB) magnets

Preliminary study done using two correctors at the end of LtB, algorithm was able

to converge and maximize beam intensity
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Booster Model Calibration model | (ylguear i) Uit )

(Iquad'lcorrie) === XBPM XBPM

e Control: power supply currents of quadrupoles and
correctors

Measured observations
from real experiment

e Parameter 0: parameters that affect the orbit but not in our

control — (magnet misalignments, magnet transfer
functions, etc.) 2

Physical parameters

Measured Calibrate

Output

e Output: orbit at the BPMs with certain current configuration
n(x;8) GP(u(x),E2(x)) | N(0,0%)

e Invert from measured BPM data to simulation model Simulated 1 precropancy +

e =+ OQutput

parameters Accelerstor T

Control p S(x
Parameters

Computational Model

e Update beliefs on model parameters with real data (Simulator)
— calibrated model m can be used to optimize beam quality Calibrated hiah-fidelitv simulation 7+ 8(x) +e
(objective F)

Xppm = m(lquadr Ieorrs 0) + €, e~N(0, 0)

Cl?allenge: How M./ell can we determu?e the Liva liorr = argmax F(m(Iguaa, Leorri 0))
alignment by orbit-response evaluation?



Booster Magnet Misalignment

Booster magnet misalignment

e Simulation studies using Bmad to see how
magnet misalignments affect orbit; survey
misalignments from 2015 used as the
baseline values in the model

Misalignment (mm)

e Misalignment data gathered for quadrupoles
and dipoles — trouble with making physics 0 % 50 B 0 15 10 15 200

Location (m)

simulation with misalignment agree with real ]
orbit data
& mlr?u';h  End |
e Use Bayesian optimal experimental design y

(BOED)-based approach to determine Savmgﬁ;?:nm Basaine
magnet settings which are expected to return e
orbit data that most reduces uncertainty in L e | P e
the magnet misalignment parameters - @J’W —

! | Define - :;kr:r;::r:wct;onEdltor -\-/ ‘iNegauve

EEae S, dal

] Set back to saved setting |




Booster magnet misalignment

Initial comparison of the
differential orbit (orbit difference
between positive, zero, and
negative corrector settings)
shows good agreement,
validating the status and
calibration of real Booster BPMs.

Current/future steps:
More factors need to be added:
e Radial steering
e Time-dependent fields
induced by magnet ramps

Will then perform Bayesian
inference

May use differentiable simulation
(Bmad-X / Bmad-Julia) to aid
model calibration

Orbit (mm)
o

Simulated Horizontal Booster Orbit with Magnet Misalignment

See poster by Lucy Lin

Simulated Vertical Booster Orbit with Magnet Misalignment

—— Orbit (misalignment data)
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Merge of AGS proton bunches at flattop

AGS bunch splitting/merging

* Emittance increase is from space charge — bunch
splitting can help reduce space charge

» Peak current (space charge) at AGS injection can
be reduced by splitting the bunch into 2 longitudinally
in Booster before transferring to AGS

* Bunches are later merged at AGS extraction

s [eal mountain range
data showing 6-to-1
bunch merge in
Booster

* Requires expert tuning of many parameters, often
done ‘by eye’

* Prone to drift over time _
Wall current monitor

(WCM) generates
voltage vs time signal.
Each separated in

. time by N turns (N
accelerator periods)

» Controls: RF voltages, phases
» Goal: minimize longitudinal emittance

* Method: Reinforcement Learning



Bunch Merge Controls

Good bunch merging essential for operations but
not trivial to achieve.

- For the merge, RF gymnastics are
performed via different RF harmonics—but
not necessarily different physical cavities.

- Booster & AGS differ in number of physical
cavities and can differ in harmonics and
merge pattern. They naturally differ in
energy, slip factor, and other
beam/accelerator qualities.

Voltage and phase are the available knobs for a
given RF harmonic.

Real machine time is limited for development:
Booster and AGS part of accelerator chain with
multiple programs — need a simulator

2D scope signal
(time, voltage)

very N turns

\\e

Device name,

parameter,
value

J

}

(arbitrary time)

Cartoon representation of accelerator with WCM,

RF cavities (arbitrary number), and input/output



Bunch Merge Simulator

Created a physics-based simulator
in Python for bunch merge
environment and diagnostics

Combines longitudinal phase-space

mapping and phase-space
projection for time signal replication

Simulated Mountain Range Data

Real Machine
B
cavities

Real WCM

2D scope signal
(time, voltage)
every N turns

User,
Program,

ML/RL,
Etc.
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Object-Oriented Programming ]

2D scope signal
(time, voltage)
every N turns

R Designed so that these sl

~

Physics-based simulator

Accelerator object

RF Cavity object
(inner class)

Diagnostics
simulator
(called as

sure(beam) needed)

Phase

t{> User, Program,

ML/RL, Etc.

Voltage

(arbitrary time)

blocks may be interchanged 7

The simulator will be used for RL development for
= improving bunch merges

Nguyen, Linh, et al., ICALEPCS ‘23
10.18429/JACOW-ICALEPCS2023-FR2A004



https://doi.org/10.18429/JACoW-ICALEPCS2023-FR2AO04

Volage profile of cavities

Bunch Merge Control g A
e 600001
e Plan to use Reinforcement Learning (RL) to optimize the bunch merge § 40000}
process in AGS 20000f
o  First validate in a simulator, then test in the real system: Bmad model of. . . . . ]
provides initial training platform for the agent = = B | =
o Afew candidates being examined: TD3, SAC, PPO O e BT = f&j L
« Bunch 2 :
e A Bmad simulator was built based on the run 22 merge data — still in the E °~‘°;,mm,‘.:jf%
development stage -
e May use Inverse Reinforcement Learning (IRL) L 2 w0 50 %0 00

o Not easy to quantify good merge results, i.e., bunch width/intensity,
center oscillation, shape oscillation, etc.

o Instead of learning the objective directly, IRL learns a reward function
from expert’'s demonstrations that best explain the experts’ behaviors
— could be useful for bunch merge

z |m)

200 400 600 800 1000



Bunch Merge Control: Future Work

Algorithm side:

e Add more intermediate control points in Bmad simulator, work out parameter
constraints

e Link components to make full simulator
e Explore RL/IRL approaches

Deployment side (FPGA):

e We have a Zynq Ultrascale FPGA evaluation board and an FMC expansion card to digitize the WCM
signals: 12-bit conversion at 1,000 Megasamples per second, with an analog range of +=2.5V

e Working on basic demonstration (FPGA) code to acquire input signals

e Still at the step of talking to the digitizer card with the FPGA board

e Next steps after this is completed:
o Work on configurable trigger logic
o Work on buffer memory implementation (to store multiple turns)



AGS resonance compensation

* Partial snakes in the AGS keep the spin tune away from the
integer (>0.96), avoiding vertical resonances

* Horizontal resonances remain, currently ‘jumped’ by moving
the horizontal tune through the resonance

» Each resonance is weak (~0.1% p loss), but there are many
of them (82), and measurements are slow

* Proposal to use 15 pulsed skew quadrupoles to
eliminate residual resonances

» Goal: minimize resonance strengths by timed skew quads
» Method: Reinforcement Learning / Bayesian Optimization
Progress: detailed Bmad model incl. differentiable snake

model, symplectic tracking, orbit and optics correction, and
various methods of resonance strength evaluation.

Betatron and spin tunes during AGS ramp

1.0

} Spin
tune gap
Y09}
o
? 0.8
[}
2 1 » } Tune
E 0.7 | i LI li 1 jump
' =
L o6 - = QL
—_— Qy
0.5 2.0 Bb |||‘|1(|JI|\|
Gy
Spin resonance terms
from skew quads in AGS
0.005
j 0.000
E

-0.005

TERe | Gy = 43.72

-0.005 0.000 0.005
Re(A¢;)
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%' [mrad]

Importance of Snake Modeling

Careful modeling is essential toward understanding the system behavior

Horizontal Phase Space
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AGS Model Calibration

Parameters to vary:

* Corrector coils (24 per Booster plane)

* Corrector coils (48 per AGS plane)

Observables to optimize:

* BPM readings (24 x&y in the Booster) (100um accuracy)

* BPM readings (72 x&y in the AGS) (100um for 2mm size at 25GeV)
Progress:

* Detailed model of AGS incl. differentiable snakes, symplectic tracking, orbit and optics compensation of snakes for
all energies.



Summary and Conclusion

New project to improve polarization for RHIC and EIC (started Fall 2023)
— even 5% improvement would be significant

Aim to do high-level optimization and control throughout the polarization chain in the injector
complex

Taking an integrated approach:
o  Modeling: improve models of the Booster and AGS by combining physics simulations and data; use Bayesian
approaches to help calibrate models

o  Optimization and control: use models to aid training of RL controllers, form priors for Bayesian optimization
where possible

Challenges range from use of standard ML techniques on many parts of machine (e.g. BO for injection
optimization), to complicated new problems that require more R&D (e.g. RL for bunch merge)

Much initial work on physics modeling!

Steadily making progress on building out tools for testing and deploying ML on target tasks!
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— True function * Observed points Confidence interval:
-=- GPmean ~—— Acquisition function

Suggest the next set of control
parameters to be evaluated.

Maximum of

/\

4 A

Update Physics-informed GP
and acquisition function

Spin Ro
(longitudinal pol

Pol. H™ Source 5
— &
200 MeV Polarimeter B

Control parameters:

Transfer line dipoles

Transfer line quadrupoles

Linac RF cavity voltages

Linac RF cavity phases

Booster main dipole injection field

X Spin Rotators I

(longitudinal polarization)

«— Helical Partial
Siberian Snake

Strong AGS Snake

Input

Measured observations
from real experiment

AL
l@‘. Moastirod Calibrate
\kd Output
22

Physical parameters
]

n(x;0) GP(p(x),2(x) | N(0,0%)

Simulated
= Output = Discrepancy <= Error

Accelerator AL

Control Zs 6(x)
Parameters

Computational Model
(Simulator)

Calibrated high-fidelity simulation zs+8(x)+€

* Intensity

Simulated measurement of beam polarization:

* Transverse emittances
* Longitudinal emittance

"AGS Polarimeter

Domain knowledge, Governing equations, etc.

Measurement data



Future: Digital twin and Optimal control

Control parameters

, Evaluation / Analytic
+ Environmental | ——> |

Metric (e.g., agreement

factors with real measurements)
Find best settings | | .. TTTemmiemmeemmemeeeeeee i
for desired i AlI/ML Methods (RL, BO, etc. |
machine state : .
: ACTION
AGENT ENVIR(]:IMENT
STATE, REWARD

S — ; 25



Alternating Gradient Synchrotron (AGS)

| «— AGS to RHIC
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Alternating gradient / strong focusing principle: achieve
strong vertical and horizontal focusing of charged
particle beam at the same time

Accelerates proton to 33 GeV in 1960

12 super-periods (Ato L), 240 main magnets, 810 m
circumference

Now serves as injector for Relativistic Heavy lon
Collider (RHIC)



Alternating Gradient Synchrotron (AGS) Booster

AGS Booster

*—- Heavy lon Transfer Line

| X _AGS

Ring

Pre-accelerate particles entering the AGS ring

Accepts heavy ions from EBIS or protons from
200 MeV Linac

Serves as heavy ion source for NASA Space
Radiation Laboratory (NSRL)

6 super-periods (A to F), 72 main magnets



RL technique: Soft Actor-Critic (SAC)

* An entropy-based Reinforcement Learning (RL) aims to not only maximize total
rewards, also to maximize the entropy of the policy

T
J@) = ) Eayapy-py [(5e.20) + at(C Isp))
t=0

Final objective is weighted between a reward term r and an entropy term H by a

» SAC makes use of three networks: a state value function V parameterized by w, a
soft Q-function Q parameterized by 6, and a policy function 1T parameterized by ¢

» We can apply SAC to automatically tune RF phases and voltages so that a
balanced beam profile can be achieved after bunch merge

24



ML Method: Bayesian Optimization

» A powerful tool for finding the extrema of objective functions that are expensive to

evaluate

« Bayes’ theorem: probability of event based on previous knowledge of conditions

P(f|D1:t)

P(Dy.|f)

P(f)

|

Tune hyperparameters of f to maximize likelihood of getting data D .,

Acquisition function '
guided sampling

~——

i,
Surrogate

model

: Criterion met?
Expensive
: Output
function

Update




BO technique: Gaussian Process

A probability distribution over possible functions
that fit a set of points

Mean function + Covariance function

f(x) ~ GP(m(x), k(x,x"))

Kernel: covariance function k(x;, x;) of the input variables

k(xy,%1) - k(eq,x¢)
Covariance matrix K = k(X, X) = : :
k(xe,x1) -+ k(e x¢)

At a sample point x;, Gaussian process returns mean u(x;|X) = m(x;) +
k(x, X)K~1(f (X) —m(X)) and variance o (x;|X) = k(x;, x;) — k(xi, X)K k(X x;)



BO technique: Acquisition Function

t=2

-
=~
-~
~
S~
-~

» Guide how input space should be AN B oicctive fn (1()
explored during optimization ¥ acquisition max
\ acquisition function (u(-))
« Combine predicted mean and variance 3

from Gaussian Process model
 Probability Improvement (PI)

» Expected Improvement (El)

» Upper Confidence Bound (UCB)

UCB(x) = u(x) + ko (x)

posterior mean (u(-))

posterior uncertainty
(u(-) £a(-))

.

v




ML Method: Reinforcement Learning

» Learn optimal behavior in an environment
to obtain maximum reward (e.g., highest
polarization)

» Agent: controller, determine sampling

policy
« Action A: change control values

* Environment: controlled system
« State S: representation of environment
* Reward R: numerical evaluation of
action

» Sequence of experience and agent forms
tl'ajeCtOry (So, Ao, Ro), (Sll All Rl)l wne

Agent

0
, Policy
| update
|

Learning
algorithm
t

(Change of)

State
Reward

Environment §



Script to get Booster orbit responses

» Script development with Collider Accelerator
Department (CAD) Controls Group

* FunctionEditor: send trapezoid-like time-
dependent function to corrector power
supplies

» Script sets three corrector settings: positive,
zero, negative; and save corresponding orbits

[ Start H Read corrector list |

¥

Save corrector settings and
BPM data

¥

Define + kick in FunctionEditor
and make live

|

| SaveBPMdata |

¥

Define - kick in FunctionEditor
and make live

|
| Save BPM data |

v
| Set back to saved setting ‘

Baseline
(Zero kick)

Positive
kick

Negative
kick

11



Orbit Correction at the AGS

 Traditional orbit correction
 obtain mapping R (orbit response matrix)

from corrector settings 6 to orbit
measurements y

* inverse mapping to get corrector settings
A needed to cancel orbit deviations Ay

Orbit correction with NN
 train directly to get inverse mapping, no
need for extra calculation

» easily update with new data and stay
output accurate

corrector
AO




ML method: Neural Network (NN)

- Establish mapping between a given set of inputs X and corresponding outputs ¥
 Fully connected layers: output = activation(dot(input, weight) + bias)
« Activation function: Hyperbolic Tangent (Tanh) and Rectified Linear Unit (ReLU)

» Feed forward neural network (FFNN): most common, no feedback route

Hidden Layer

Input Layer Output Layer

Hyperbolic tangent _&—¢* Multi-layer
$(2) = et + e—2 Neural C.
Networks
Rectifier, ReLU Multi-layer
(Rectified Linear &(z) = max(0, z) Neural 45:i——+
Unit) Networks

z=wlx+b a
a=g(z)
X3



AGS ORM NN model: training results

 Input 48 vertical corrector kick —» Output 72 y orbit measured at BPM
R2=1_ > (v — 9:)°

« Trained on 800 data pairs, tested on 200 data pairs: R? score = 0.998 S (5 — 7.
—e— dat
0.004 . predict
0.002 /’ / /"A \ - / ¥
E 1 | W‘H&(“(\ / X //\. [ / \0\ /
_g 0.000 " \ / ’ \ | v \ o
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74 Ve “d .\/ \
-0.002 \/
X 5 I
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Inverse AGS ORM NN model: training results

* Input 72 y orbit measured at BPM — Output 48 vertical corrector kick

- Trained on 800 data pairs, tested on 200 data pairs: R? score = 0.993

]. ¥ —e— data
» - \ ﬁ ‘ predict
/ [ ! [

corrector kick (rad)
v o
S
\\j’
/
;_)wo




Future project: Timing of tune jumps

The G-gamma meter and accurate energy vs. time

(1) Measure the energy by orbit + revolution frequency measurement
(2) Measure of energy by field + revolution frequency measurement

(3) Measure energy by spin flip at every integer spin tune
0.1 T T T T T T T T

008 |
< 0.06 | i

Combined optimization

ry

Teasd

3 0.04 I i a :

g 002 11} A | => better timin

dor MY | 0
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150 200 250 300 350 400 450 500 550 600
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For ongoing project (g): Need of optics correction

In the following, we track through a few resonances with realistic transverse emittance

before transition energy (at Gy~15).

The transverse emittance blows up due to vertical dispersion and optics errors after Gy~13,

decreasing polarization.

In response to yesterday’s question, no problem
has yet been observed at 1/3 spin tune.
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For ongoing project (g): AGS polarization tracking

Tracking through a single horizontal spin resonance with very large
emittance to visualize depolarization. This is not the real case since each
resonance is much weaker and causes less than 0.1% depolarization:

15 skew quads Qo A e ]
0.4 SRR T
5 skew quads “
0.2 k d t{c o
0 skew quads &
% o] 2: il
+¥
-0.2 ?
%
&
-0.4 'f‘:
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*
¥
-0.8 + skew quads off %5
15 skew quads on pe
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| used a series expansion of solutions to Maxwell’s equations such that each term is an exact
solution.

This allows me to truncate the expansion at any order and still precisely satisfy Maxwell’'s equations.

The following is an example of 1 term in such a series solution:
By = A  cosh(kz(z + x0)) cos(ky(y + yo)) cos(k.z + ¢.)
k"rl - .
B,=-A E—‘i sinh(kz(x + z0)) sin(ky(y + v0)) cos(k.z + ¢.)

k.
B, =-A k—” sinh(k;(x + o)) cos(ky(y + yo)) sin(k.z + ¢.)

By fitting the field data to 300 such terms, | recover an expression that exactly solves Maxwell’s
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Measurements

*ORM will give us

*BPM and Corrector Anomalies (Trust Analysis)
*Gradient errors for given conditions
*Beta-deviations from model

*Dispersion measurements give us
*BPM Consistency check for given dp/p (BPM Anomalies)
*Coupling through longitudinal motion (very slow, typically)

*Tune measurements
*Betatron tune and coupling = destructive measurement in Booster/AGS
*Tune, Chrom, coupling, emittance, dp/p from RHIC Schottky

*Chromaticity measurements — need to change energy and measure tune
*Orbit Measurements — parasitic = most are time averaged, some turn by turn

eLinear model + small nonlinearities with NN model



