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Introduction

High intensity lasers are a critical technology for present-day and future accelerators

Laser focal position (and temporal beam profile) is a critical figure of merit for plasma

accelerator applications
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Introduction

Objective: Utilize a fast non-perturbative wavefront sensor to predict focal position with

high accuracy. A motorized beam expander will permit rapid corrections to the focus
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Focal position variation is a concern

Systems exhibit significant shot-to-shot fluctuations in focal position, as evidenced by
high-quality laser wavefront measurements taken at the beamline
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Beam Telescope and Motion Stage

1684276587_50000.npy.

A transmissive, telescopic beam expander enables flexible
focal position adjustment
We chose a Zaber X-LDA025A-AE53D12 for prototype -
testing due to its availability and features = e

. . L Linear stage response
Built-in PID controller and serial communication baud rate megﬂsmpm
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Speed and fidelity tradeoffs motivate processing pipeline
Dataset includes 30k shots across separate

runs from a HASO4 Wavefront sensor as Thorlabs WFS20-7AR Wavefront Sensor
the ground truth
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Systematic Measurement Effects
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So why use vendor tools?

We don't often talk about it in our (scientific-focused) domain, but it helps to go back
to why machine learning accelerators exist: to either decrease latency or power!

Edge (embedded NPU, FPGA, or bluefield-style) vs ‘edge’ (deployed containers) vs
edge (centralized data streams)

Don't open source solutions exit? — this is a misnomer given that the cost of
development comes from somewhere. Open source does not mean free

1Watt per bit, Watt per computation
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‘Mainstream’ Accelerators

Defining ML accelerators (by order of specialization):
o CPUs (Arm NN, Intel optimizers)

GPUs (Zink, OpenCL, CUDA, ROCm)

TPUs/NN/array processing cores

<o

<&

o Reconfigurable Al accelerators/CPUs (graphcore, Xilinx Al Engine, Cerberas)
o In-fabric programmable hardware (custom processing)

Custom processors (e.g., IBM accelerated application processors)

<&

o ASIC dedicated hardware (asic-design-complexity)
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Complexity of Implementation
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Deployment at LBNL: Toolchains in use

MLops Model training, deployment, optimization, quantization

FPGA Co-accelerator lives in FPGA fabric; minimizes power, easy hardware
interfacing

Labview Thorlabs uses NI CVI vision drivers
Operating System Cameras and motion stages (RS232, RS422, GPIO)
Python Camera interface, user application, and communication
Control System EPICS or GEECS (BELLA LabVIEW system)
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Example Xilinx Implementation
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Model Development Process

o

Experimentation
» PyTorch, PyTorch Lightning, Tensorflow, Keras

Optimization / Quantization

<o

Compilation

<o

o Runtimes

o Performance Testing
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Model Development Process: Steps

o Model was developed in PyTorch or Tensorflow
o Optimization and pruning occurs in the vendor toolkit
o Model can be exported to compliant format (i.e., PyTorch, ONNX)

o Xilix Vitis Al Docker container provides model conversion, quantization, and
compilation tooling

o Compiled model is loaded on to ZCU104 with bitstream including two DPUs
o Model is loaded with Xilinx utilities in image

o Application will interface with DPU and camera data
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Model Development Process: Optimization Tooling

o Tensorflow (and Tensorflow Lite)

» tensorflowmodel optimization (separate package)
» https://www.tensorflow.org/model_optimization/guide/pruning/
comprehensive_guide

Pytorch

<

» torch.nn.utils.prune
» https://pytorch.org/tutorials/intermediate/pruning_tutorial.html#
global-pruning

Qkeras — Keras extension for quantization

<o

o Manufacturer-specific tooling (e.g., Xilinx Optimizer, Intel OpenVINO)
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Model Development Process: Compilation

o For co-accelerators (DPU, TPU, GPU)

» Necessary to compile model to an assembly language and operations that the
hardware understands

o Often requires specific input artifacts and generates custom build artifacts

» Tensorflow Lite (TPU)
SYCL/OpenCL programs
Xilinx .xmodel files
Device bitstreams
GPU-specific architectures (CUDA, AMD ROCm)
ONNXruntime
® Microsoft-developed framework
® Almost every toolchain now takes in ONNX models and the ONNXruntime itself can

run models on almost any device (ONNXruntime)
® CPU, OpenCL devices, GPU, TPU, FPGA accelerators (DPU), OpenVINO (Intel)

vyvyyvyYyYyy
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Shared Languages and Compilers

SYCL, OpenCL and SPIR-V, as open industry SYCL enables Khronos to
standards, enable flexible integration and (SYCL influence 1SO C++ to (eventually)
deployment of multiple acceleration technologies Source Code support heterogeneous compute
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Shared Languages and Compilers

Upsi

(] [ [l =]

MLIR

Significant development has been occurring

within the LLVM ecosystem to develop :
intermediate representations (IRs) that can
map to hardware

[ sosemveri ] | m<wd)°|| B D) ” Pacenens ) |

/A\ radiasoff Leveraging Vendor Tools for Al Acceleration 18/30



Model Development Process: Runtimes

o SYCL
» Necessary to compile model to an assembly language and operations that the
hardware understands
o ONNXruntime
» Microsoft-developed framework
» Almost every toolchain now takes in ONNX models and the ONNXruntime itself can

run models on almost any device (ONNXruntime)
» CPU, OpenCL devices, GPU, TPU, FPGA accelerators (DPU), OpenVINO (Intel)
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Xilinx DPU on ZCU104 Workflow

1. Develop and save model

2. Build python script to run in Vitis Al docker container to quantize model and save
the model

» This script should also check performance for a production deployment as
performance IS lost in the quantization process

» Quantization is necessary to run a model using integer types instead of float types,
due to accelerator data format requirements

3. Compile the model in to the Xilinx DPU .xmodel format
4. Deploy the xmodel, run script, and dataset to the device

5. Run the performance test
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Xilinx DPU on ZCU104 Workflow

Requires use of several files chained together to create, compile, optimize, and deploy a
model

Stage 1
ffnn.py > docker run.py > runme.sh > runme_tf2.sh > compile for zculO4.sh

Stage 2
deploy.sh - radiasoft.py
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Model Performance

(image) xilinx-zcul04-2021_1:7# hon /tmp/r -d /tmp/data.hdf5 -m /tmp/r

model

-

input_fixpos=7 input_scale=128
SPS=5047.43, total samples = 360.00 ,
Closing remaining open files:/tmp/data.hdf5...

time=0.071323 seconds

A wN

Listing 1: Tracing Performance
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Xilinx Performance Tracing

P xclbin x
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Xilinx Performance Tracing

P xclbin x

Profile Summa

x G 5
SO 8 X oo M +T mpare T
Name Value 947,500 us 945, 000 us 945,500 us 949, 000 us 945,500 us 550, 800 us 950,500 us 951,08
~ Host
~ HAL API Calls
~ General
Parallel Gereral 1 EEEE I A TR T TR TE TR TR TR T e TR T
Farallel General 2
* Data Transfer
Parallel Read 1 } } } } } }
~ write
Parallel rite 1 I I I
~ DPU
~ DPUCZDX8G:DPUCZDXEG_L
parallel DPUCZ..:DPUCZDX8G_1 1
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Xilinx Performance Tracing

P xclbin x

Summary X Profile Summary
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Final Thoughts

There's almost no way to get around using vendor tools when deploying ML

Open source does not mean not proprietary

Integrating tools for custom accelerators requires some thought as to how it would map
to infrastructure and support needs
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Thank you!
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States Government or any

agency thereof.
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Code

runme.sh

#!/bin/bash

# Activate con environment
conda activate vitis-ai-tensorflow2

# In all tabl
pip install tables

# Run model quantizer
python3 runme_tf2.py

# Compile the model
./compile_for_zcul04.sh

# G srate graph
xir svg build/compiled_model_zcu104/radiasoft.xmodel build/compiled_mode1_zcu104/out.svg
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Code

runme_tf2.py

#1/1 /bin/env python3

import os
os.environ[
os.environ[

import tensorflow as tf
import pandas as pd

tf.keras.backend.set_learning_phase (0)

# Load dataset

storer = pd.HDFStore ( , mode= )
x_train = storer.get( ) . to_numpy ()
x_val = storer.get( ) . to_numpy ()
y_train = storer.get( ) . to_numpy ()
y_val = storer.get( ) . to_numpy ()
storer.close ()

# Create tensorflow da

ds tf.data.Dataset.from_tensor_slices ((x_val,
y_val))

ds = ds.batch(5, drop_remainder=True)

aset for of management

# Load model

mm tf.keras.models.load_model (
mm. summary ()

model = mm

Quantize model
from tensorflow_model_optimization.quantization.

keras import vitis_quantize
quantizer = vitis_quantize.VitisQuantizer (model)
quantized_model = quantizer.quantize_model(
calib_dataset=ds)

# Quantization-aware training
quantized_model.save (
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Python Camera Driver

khzwave.server
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receiver
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Module khzwave.wfs

driver

dita
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