
Leveraging Vendor Tools for AI Acceleration

Joshua Einstein-Curtis

RadiaSoft LLC

March 6, 2024

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy
Physics, under Award Number(s) DE-SC0021680.

Leveraging Vendor Tools for AI Acceleration



Introduction

High intensity lasers are a critical technology for present-day and future accelerators

Laser focal position (and temporal beam profile) is a critical figure of merit for plasma
accelerator applications

Leveraging Vendor Tools for AI Acceleration 2 / 30



Introduction
Objective: Utilize a fast non-perturbative wavefront sensor to predict focal position with
high accuracy. A motorized beam expander will permit rapid corrections to the focus

Controller

System PVs

Leveraging Vendor Tools for AI Acceleration 3 / 30



Focal position variation is a concern
Systems exhibit significant shot-to-shot fluctuations in focal position, as evidenced by
high-quality laser wavefront measurements taken at the beamline

Leveraging Vendor Tools for AI Acceleration 4 / 30



Beam Telescope and Motion Stage

A transmissive, telescopic beam expander enables flexible
focal position adjustment

We chose a Zaber X-LDA025A-AE53D12 for prototype
testing due to its availability and features

Built-in PID controller and serial communication baud rate
limits control bandwidth

Linear stage response

Focal position sensitivity

Leveraging Vendor Tools for AI Acceleration 5 / 30



Speed and fidelity tradeoffs motivate processing pipeline
Dataset includes 30k shots across separate
runs from a HASO4 Wavefront sensor as

the ground truth
Thorlabs WFS20-7AR Wavefront Sensor

Leveraging Vendor Tools for AI Acceleration 6 / 30



Systematic Measurement Effects

Thorlabs WFS20 image resolution setting vs calculated Radius of Curvature Left:
Calculated ROC in time domain, Right: FFT of calculated ROC

Leveraging Vendor Tools for AI Acceleration 7 / 30



So why use vendor tools?

We don’t often talk about it in our (scientific-focused) domain, but it helps to go back
to why machine learning accelerators exist: to either decrease latency or power1

Edge (embedded NPU, FPGA, or bluefield-style) vs ‘edge’ (deployed containers) vs
edge (centralized data streams)

Don’t open source solutions exit? – this is a misnomer given that the cost of
development comes from somewhere. Open source does not mean free

1Watt per bit, Watt per computation

Leveraging Vendor Tools for AI Acceleration 8 / 30



‘Mainstream’ Accelerators

Defining ML accelerators (by order of specialization):
⋄ CPUs (Arm NN, Intel optimizers)
⋄ GPUs (Zink, OpenCL, CUDA, ROCm)
⋄ TPUs/NN/array processing cores
⋄ Reconfigurable AI accelerators/CPUs (graphcore, Xilinx AI Engine, Cerberas)
⋄ In-fabric programmable hardware (custom processing)
⋄ Custom processors (e.g., IBM accelerated application processors)
⋄ ASIC dedicated hardware (asic-design-complexity)

Leveraging Vendor Tools for AI Acceleration 9 / 30



Complexity of Implementation

CPU

1 x = model(data)

ASIC

Leveraging Vendor Tools for AI Acceleration 10 / 30



Deployment at LBNL: Toolchains in use

MLops Model training, deployment, optimization, quantization
FPGA Co-accelerator lives in FPGA fabric; minimizes power, easy hardware

interfacing
Labview Thorlabs uses NI CVI vision drivers

Operating System Cameras and motion stages (RS232, RS422, GPIO)
Python Camera interface, user application, and communication

Control System EPICS or GEECS (BELLA LabVIEW system)

Leveraging Vendor Tools for AI Acceleration 11 / 30



Example Xilinx Implementation

Device DPUCZDX8G
Configuration

Frequency
(MHz)

Peak Theoretical Per-
formance (GOPS)

Z7020 B1152x1 200 230
ZU2 B1152x1 370 426
ZU3 B2304x1 370 852
ZU5 B4096x1 350 1400
ZU7EV2 B4096x2 330 2700
ZU9 B4096x3 333 4100

2Used in ZCU104

Leveraging Vendor Tools for AI Acceleration 12 / 30



Model Development Process

⋄ Experimentation
▶ PyTorch, PyTorch Lightning, Tensorflow, Keras

⋄ Optimization / Quantization
⋄ Compilation
⋄ Runtimes
⋄ Performance Testing

Leveraging Vendor Tools for AI Acceleration 13 / 30



Model Development Process: Steps

⋄ Model was developed in PyTorch or Tensorflow
⋄ Optimization and pruning occurs in the vendor toolkit
⋄ Model can be exported to compliant format (i.e., PyTorch, ONNX)
⋄ Xilix Vitis AI Docker container provides model conversion, quantization, and

compilation tooling
⋄ Compiled model is loaded on to ZCU104 with bitstream including two DPUs
⋄ Model is loaded with Xilinx utilities in image
⋄ Application will interface with DPU and camera data

Leveraging Vendor Tools for AI Acceleration 14 / 30



Model Development Process: Optimization Tooling

⋄ Tensorflow (and Tensorflow Lite)
▶ tensorflow_model_optimization (separate package)
▶ https://www.tensorflow.org/model_optimization/guide/pruning/

comprehensive_guide

⋄ Pytorch
▶ torch.nn.utils.prune
▶ https://pytorch.org/tutorials/intermediate/pruning_tutorial.html#

global-pruning

⋄ Qkeras – Keras extension for quantization
⋄ Manufacturer-specific tooling (e.g., Xilinx Optimizer, Intel OpenVINO)

Leveraging Vendor Tools for AI Acceleration 15 / 30

https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide
https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html#global-pruning
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html#global-pruning


Model Development Process: Compilation

⋄ For co-accelerators (DPU, TPU, GPU)
▶ Necessary to compile model to an assembly language and operations that the

hardware understands
⋄ Often requires specific input artifacts and generates custom build artifacts

▶ Tensorflow Lite (TPU)
▶ SYCL/OpenCL programs
▶ Xilinx .xmodel files
▶ Device bitstreams
▶ GPU-specific architectures (CUDA, AMD ROCm)
▶ ONNXruntime

⊙ Microsoft-developed framework
⊙ Almost every toolchain now takes in ONNX models and the ONNXruntime itself can

run models on almost any device (ONNXruntime)
⊙ CPU, OpenCL devices, GPU, TPU, FPGA accelerators (DPU), OpenVINO (Intel)

Leveraging Vendor Tools for AI Acceleration 16 / 30



Shared Languages and Compilers

Leveraging Vendor Tools for AI Acceleration 17 / 30



Shared Languages and Compilers

Significant development has been occurring
within the LLVM ecosystem to develop
intermediate representations (IRs) that can
map to hardware

Leveraging Vendor Tools for AI Acceleration 18 / 30



Model Development Process: Runtimes

⋄ SYCL
▶ Necessary to compile model to an assembly language and operations that the

hardware understands
⋄ ONNXruntime

▶ Microsoft-developed framework
▶ Almost every toolchain now takes in ONNX models and the ONNXruntime itself can

run models on almost any device (ONNXruntime)
▶ CPU, OpenCL devices, GPU, TPU, FPGA accelerators (DPU), OpenVINO (Intel)

Leveraging Vendor Tools for AI Acceleration 19 / 30



Xilinx DPU on ZCU104 Workflow

1. Develop and save model
2. Build python script to run in Vitis AI docker container to quantize model and save

the model
▶ This script should also check performance for a production deployment as

performance IS lost in the quantization process
▶ Quantization is necessary to run a model using integer types instead of float types,

due to accelerator data format requirements

3. Compile the model in to the Xilinx DPU .xmodel format
4. Deploy the xmodel, run script, and dataset to the device
5. Run the performance test

Leveraging Vendor Tools for AI Acceleration 20 / 30



Xilinx DPU on ZCU104 Workflow

Requires use of several files chained together to create, compile, optimize, and deploy a
model

Stage 1
ffnn.py docker_run.py runme.sh runme_tf2.sh compile_for_zcu104.sh

Stage 2
deploy.sh radiasoft.py

Leveraging Vendor Tools for AI Acceleration 21 / 30



Model Performance

1 (image) xilinx -zcu104 -2021_1:~# vaitrace -p python /tmp/radiasoft.py -d /tmp/data.hdf5 -m /tmp/radiasoft
.xmodel

2 input_fixpos =7 input_scale =128
3 SPS =5047.43 , total samples = 360.00 , time =0.071323 seconds
4 Closing remaining open files:/tmp/data.hdf5 ... done

Listing 1: Tracing Performance

Leveraging Vendor Tools for AI Acceleration 22 / 30



Xilinx Performance Tracing

Leveraging Vendor Tools for AI Acceleration 23 / 30



Xilinx Performance Tracing

Leveraging Vendor Tools for AI Acceleration 23 / 30



Xilinx Performance Tracing

Leveraging Vendor Tools for AI Acceleration 23 / 30



Final Thoughts

There’s almost no way to get around using vendor tools when deploying ML

Open source does not mean not proprietary

Integrating tools for custom accelerators requires some thought as to how it would map
to infrastructure and support needs

Leveraging Vendor Tools for AI Acceleration 24 / 30



References

1. ARM ML: https://www.mlplatform.org/
2. Google ecosystem: Tensorflow, TFX, Tensorflow Lite, and coral.ai
3. ONNXruntime: https://onnxruntime.ai/
4. Vitis AI: https://github.com/Xilinx/Vitis-AI

Leveraging Vendor Tools for AI Acceleration 25 / 30

https://www.mlplatform.org/
https://onnxruntime.ai/
https://github.com/Xilinx/Vitis-AI


Thank you!

Leveraging Vendor Tools for AI Acceleration 26 / 30



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes

any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

infringe privately owned rights. Reference herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or any agency thereof. The views and opinions

of authors expressed herein do not necessarily state or reflect those of the United States Government or any

agency thereof.

Leveraging Vendor Tools for AI Acceleration 27 / 30



Code
runme.sh

1 #!/bin/bash
2
3 # Activate conda environment
4 conda activate vitis -ai-tensorflow2
5
6 # Install tables
7 pip install tables
8
9 # Run model quantizer

10 python3 runme_tf2.py
11
12 # Compile the model
13 ./ compile_for_zcu104.sh
14
15 # Generate graph
16 xir svg build/compiled_model_zcu104/radiasoft.xmodel build/compiled_model_zcu104/out.svg

Leveraging Vendor Tools for AI Acceleration 28 / 30



Code
runme_tf2.py

1 #!/usr/bin/env python3
2
3 import os
4 os.environ[’TF_CPP_MIN_LOG_LEVEL ’] = ’3’
5 os.environ[’VAI_LOG_LEVEL ’]=’-1’
6
7 import tensorflow as tf
8 import pandas as pd
9

10 tf.keras.backend.set_learning_phase (0)
11
12 # Load dataset
13 storer = pd.HDFStore("data.hdf5", mode="r")
14 x_train = storer.get("/input_train").to_numpy ()
15 x_val = storer.get("/input_validate").to_numpy ()
16 y_train = storer.get("/output_train").to_numpy ()
17 y_val = storer.get("/output_validate").to_numpy ()
18 storer.close ()
19
20 # Create tensorflow dataset for ease of management
21 ds = tf.data.Dataset.from_tensor_slices ((x_val ,

y_val))
22 ds = ds.batch(5, drop_remainder=True)

23 # Load model
24 mm = tf.keras.models.load_model("model_tuned/")
25 mm.summary ()
26 model = mm
27
28 # Quantize model
29 from tensorflow_model_optimization.quantization.

keras import vitis_quantize
30 quantizer = vitis_quantize.VitisQuantizer(model)
31 quantized_model = quantizer.quantize_model(

calib_dataset=ds)
32
33 # Quantization -aware training
34 quantized_model.save(’quantized_model.h5’)

Leveraging Vendor Tools for AI Acceleration 29 / 30



Python Camera Driver

Leveraging Vendor Tools for AI Acceleration 30 / 30


	Introduction
	Using Vendor Tools
	Deployment at LBNL
	Tooling

	Model Development Process
	Implementation
	Compilation
	Runtimes

	References
	Extra Slides

