Lean MLOps stack for development and deployment of Machine Learning models into an EPICS Control system

Mateusz Leputa

ICFA 4th MaLAPA, Gyeongju, South Korea

6th of March 2024

Science and Technology Facilities Council

ISIS Neutron and Muon Source

Overview

- Challenges and Motivation
- Development to Deployment
- Examples
- Workflow summary
- Future developments

ISIS Neutron and Muon Source

 \mathbb{X}

(O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Motivation and Challenges

Challenges day-to-day

- Resource constrained
- Frequent shelving and "re-heating"
- Management Visibility

- Code rot and ML rot (e.g. parameter drift)
- User feedback, objective alignment etc.

Distilled Issues

- Partially done work
- Task switching & waiting
- Identifying bugs/performance issues.
- Maintenance
- Knowledge siloing

(almost all flavours of *muda*, see **Lean**)

Objectives

- Fast delivery
- Getting user feedback faster
- Generality of tooling
- Use as much "off-the-shelf" as possible.

Lots of ML time is spent on non-ML tasks. i.e. tasks that don't deliver value to the **"customer**"

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

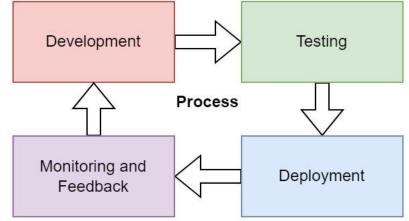
(O) @isisneutronmuon

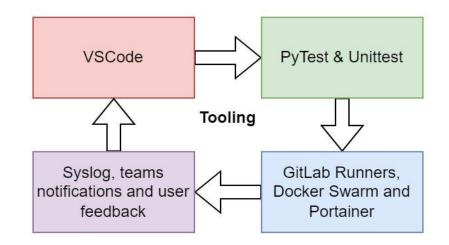
im uk.linkedin.com/showcase/isis-neutron-and-muon-source

ിന്തി uk.linkedin.co

Motivation – Software development practices we implement already

DevOps we adopted already:


- **CI/CD** Continuous Integration and Continuous Deployment
- Version control systems for models and data
- Testing tools
- Modular Architecture with majority "off-the-shelf" components.


For ML we also want to:

- Model Version Control Systems
- Blob and artifact Version Control Systems
- Quickly deploy to production and swap out models.
- Reuse as many components as possible.
- Work with out users to improve the model and how they interact with it.

Relevant Lean Objectives:

- Minimal task switching and waiting long training times
- Minimise Handoffs/overs non-standardised boilerplate
- Empower the team Work with users to better align objectives

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

(O) @isisneutronmuon

الس) uk.linkedin.com/showcase/isis-neutron-and-muon-source

Remote Workspaces/Development Environment

Stack: JupyterLab and Hub

- Developers are already familiar with JupyterLab
- NFS facilitates data transfers and collaboration spaces
- High spec servers GPUs, high spec CPUs, RAM etc.
- 24/7 uptime no need to leave PC on or wait for jobs to finish.
- Optional but helpful!

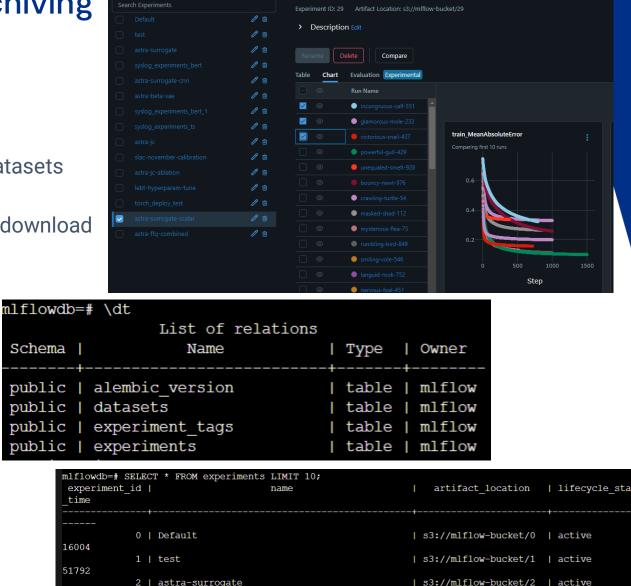
Key advantage was **the speed increase** due to access better hardware. Self-hosting had no upside for us

+ 🗈	± C		Is jovyan@d01ce9a4022f: ~ × +						
Filter files by na	me	Q	Fri Oct	6 21:	d 01ce9a4022f: ~ 47:05 2023				
			NVIDI	A-SMI 5	35.86.10	Driver	Version: 535.86.10 (CUDA Versio	n: 12.2
Name athena share	•	Last Modified 3 days ago	GPU	Name		Persistence-M	Bus-Id Disp.A	Volatile	Uncorr. ECC
data_lake		8 days ago	l i			0.	Memory-Usage	i	MIG M.
🖿 syslog		8 months ago	0	NVIDIA	A100 80GB PCIe	Off	+=====================================	ĺ	0
🖿 wip		a month ago	1				535MiB / 81920MiB 	Ì	Disabled
			1 N/A	NVIDIA 43C	A100 80GB PCIe P0	0ff 70W / 300W	00000000:CA:00.0 Off 535MiB / 81920MiB	 0%	0 Default Disabled
			+ Proce GPU	sses: GI ID	CI PID ID	Type Proce	ss name		GPU Memory Usage
			+						

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

(O) @isisneutronmuon

ແກງ uk.linkedin.com/showcase/isis-neutron-and-muon-source



Experiment, Model and Data Archiving

Stack: MLflow, MINIO, PosgreSQL

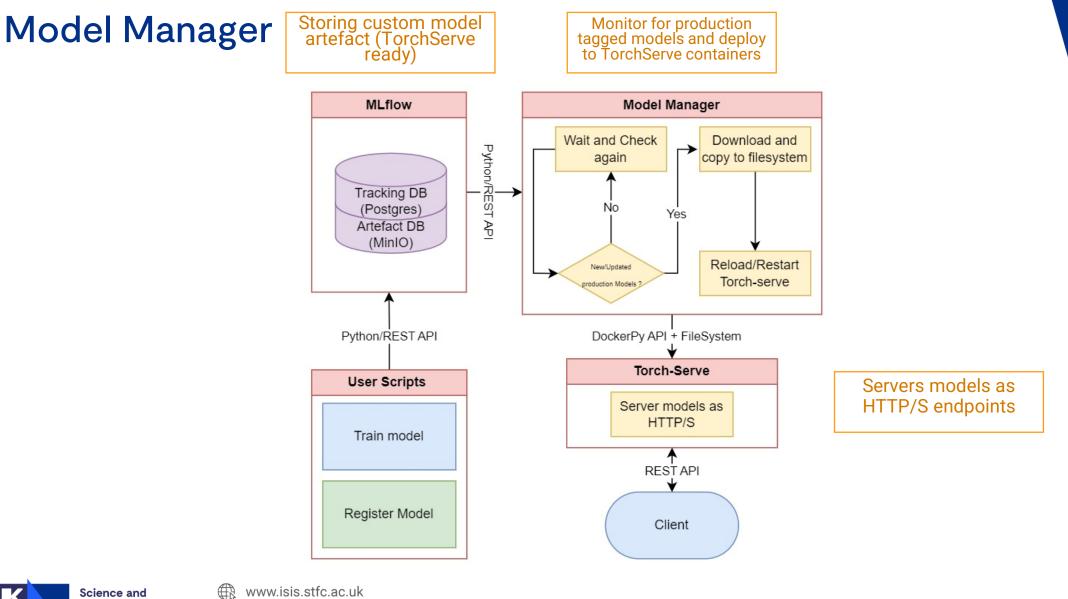
- Comes with a web GUI. •
- Saves experiment setup, performance metrics, datasets (tabular) and model (blob).
- Provides an API to programmatically upload and download models, query experiment results and charts etc.
- Comes with its own **model serving** utilities. •
- Mutable model labels (latest, nightly, etc).
- Very active development with a big community.

Purpose built version control system/ database – core of the MLOps system

Ð٩

astra-surrogate-scalar 🕒 🛛 Provide Feedback 🖸

Experiments

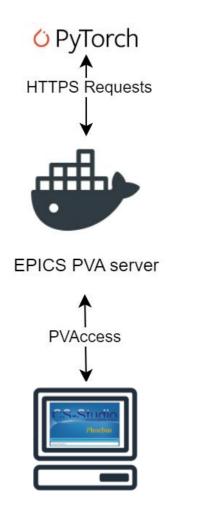

www.isis.stfc.ac.uk

ISIS Neutron and Muon Source

uk.linkedin.com/showcase/isis-neutron-and-muon-source

lim

@isisneutronmuon

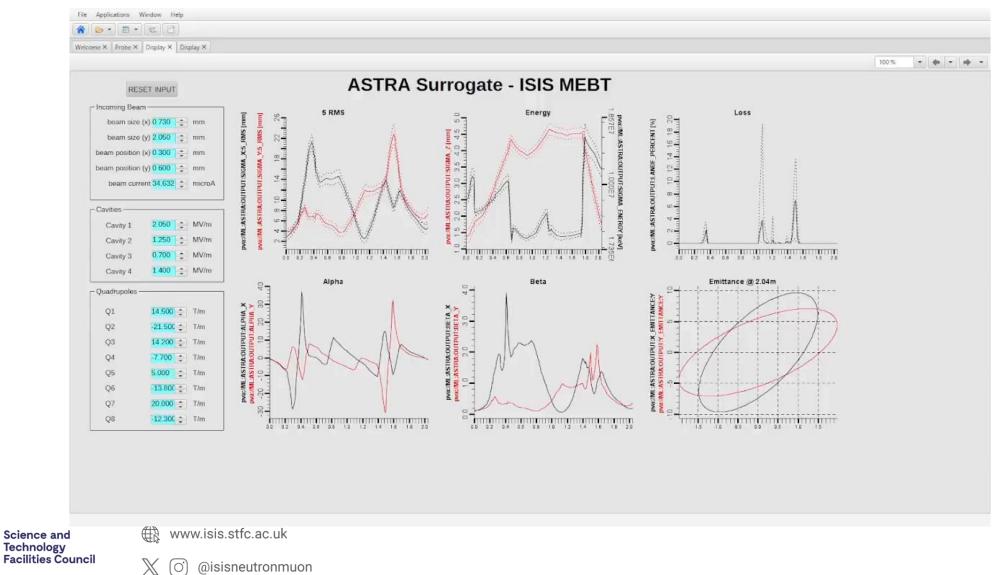

ISIS Neutron and Muon Source (O) @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Deployment to EPICS

Stack: Torch-serve & p4p python library

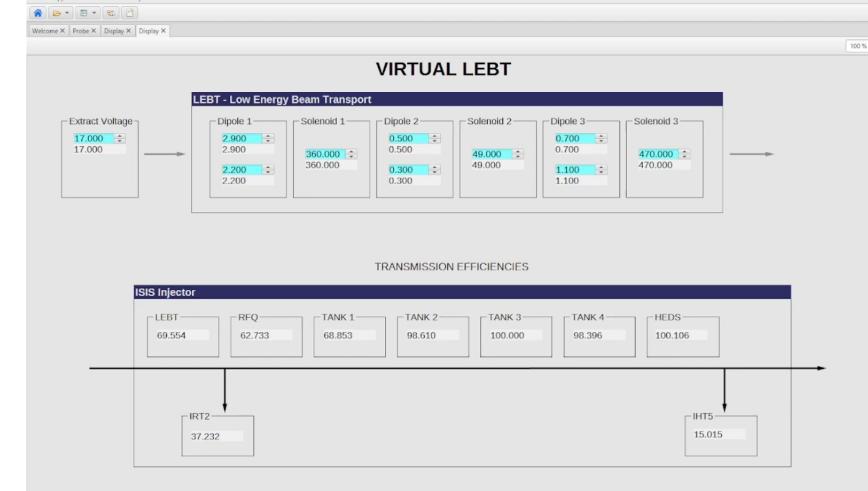
- Originally built with TF-serve but fond Torch-Serve is a bit more flexible – can wrap around other frameworks.
- Latency of **16-40 ms** for small models (mostly attributed to network latency).
- HTTP/S to EPICS P4P server deployed as a service.
- These containers are highly templatable.



ISIS Neutron and Muon Source www.isis.stfc.ac.uk

() @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source


Example 1 – ASTRA Surrogate – ISIS MEBT

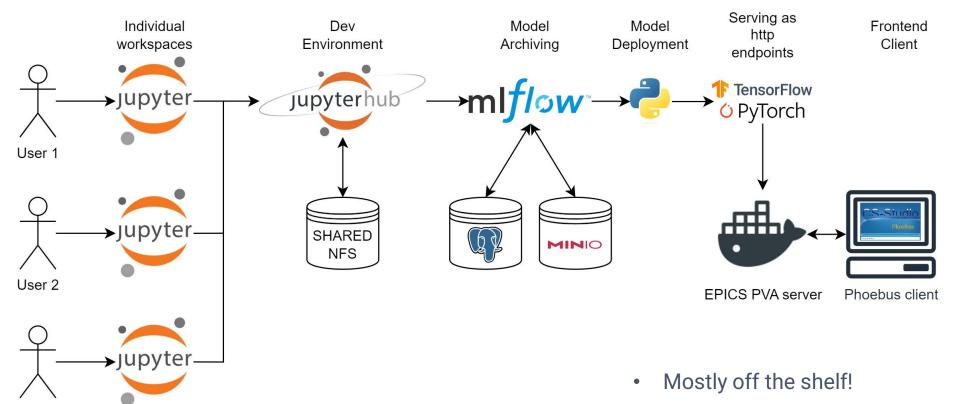
ISIS Neutron and Muon Source

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Example 2 – LEBT

ISIS Neutron and

Muon Source


www.isis.stfc.ac.uk

💥 (O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

- - - -

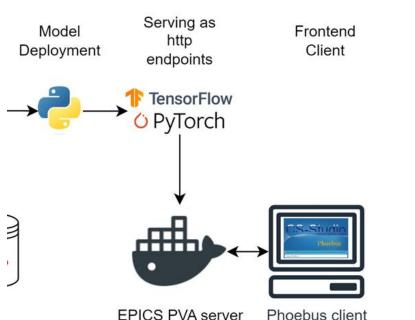
Workflow - Summary

- Makes delivery of new models faster
- Further "low-hanging-fruit" for automation/templationg
- Dovetails nicely into other MLOps initaitves.

ISIS Neutron and Muon Source

User 3

www.isis.stfc.ac.uk


Ж

(O) @isisneutronmuon

伽 uk.linkedin.com/showcase/isis-neutron-and-muon-source

Further Developments

- Swarm to k8s conversion
- Refactor model manager to a more generic deployment interface
- Integration into the LUME ecosystem
- Model monitoring and evaluation systems towards continual learning
- Automated MLOps workflows built on top of the above!

EPICS PVA server

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

@isisneutronmuon O'

uk.linkedin.com/showcase/isis-neutron-and-muon-source lîm

Thank You

mateusz.leputa@stfc.ac.uk

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

💥 (Ö) @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Special thanks to the ML Team at ISIS!