4TH ICFA ML WORKSHOP, 2024

MARCH 7, 2024

DETAILED 4D PHASE SPACE RECONSTRUCTION OF FLAT AND MAGNETIZED BEAMS USING DIFFERENTIABLE SIMULATIONS AND NEURAL NETWORKS*

SEONGYEOL KIM** (FORMER AWA MEMBER FOR BEAM DYNAMICS)

On behalf of Argonne Wakefield Accelerator Group

*Based on submitted paper: Seongyeol Kim, Juan Pablo Gonzalez-Aguilera *et al.,* <u>arXiv:2402.18244</u>, 2024. **Currently at Pohang Accelerator Laboratory, Republic of Korea.

Contents

Srief introduction and motivation

Flat and magnetized beams

Generative phase space reconstruction (GPSR) algorithm

Brief introduction to the algorithm

Demonstrations at Argonne Wakefield Accelerator (AWA)

***** Summary

Introduction: what are flat and magnetized beams?

Introduction: why flat and magnetized beams?

Ways to increase luminosity in colliders

4th ICFA MaLAPA 2024 | March 7, 2024 | Seongyeol Kim | 4

Motivation of beam diagnostics using AI/ML methods

Robust way to characterize those special beams: Generative Phase Space Reconstruction based on AI/ML method

Generative phase space reconstruction

Solving for the initial distribution using gradient-based optimization

R. Roussel et al., Phys. Rev. Lett. 130, 145001, 2023.

Differentiable Beam Dynamics Simulation Neural Network **Proposed Initial** Simulated Screen Images Particle Distribution Parameterized Transform Quadrupole magnet Randomly Generated n = 1Samples $X \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ YAG Experimental Screen Images Reconstructed Gradient calculation Initial Distribution **Optimization Step** n=1Loss Function

R. Roussel, AWANOW workshop, August 2023.

Experimental setup @ AWA

Experimental setup @ Argonne Wakefield Accelerator*

Case 1: magnetized beam reconstruction

IS. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

x (mm)

<xx'> = 0.476 um

Reconstructed initial beam phase space

y (mm)

<vv'>

= 0.466 um

x (mm)

RMSX = 1.62 mm

> RMSY = 1.58 mm

Case 2: flat beam reconstruction

> Applied solenoid field at the cathode is different from magnetized beam reconstruction

Prediction using reconstructed phase space

percentile

Reconstructed initial beam phase space successfully predicts the measured quadrupole scan images

 $\Sigma_1 = \begin{bmatrix} \epsilon_+ T_+ & 0 \\ 0 & \epsilon_- T_- \end{bmatrix}$

Reconstructed flat beam follows the transformed beam matrix: <u>no major correlations</u>

Reconstructed initial beam phase space

4th ICFA MaLAPA 2024 | March 7, 2024 | Seongyeol Kim | 16

Summary

****R. Ryan**, Fast 6-Dimensional Phase Space Reconstructions using Generative Beam Distribution Models and Differentiable Beam Dynamics, March 7, 2024

** **JP Gonzalez-Aguilera**, High-dimensional characterization of coherent synchrotron radiation effects using generative-model-based phase space reconstruction methods , March 7, 2024

- Successful characterization of the flat and magnetized beams are performed using generative phase space reconstruction method
 - Magnetization was successfully estimated using simple quadrupole scan method + GPSR, without use of slit
 - It was verified through the GPSR method that transverse correlations on the flat beam is minimized // emittance ratio is large (>90)
- As shown in Ryan and Juan-Pablo's talk**, complete six-dimensional phase space reconstruction is <u>available</u> together with deflecting cavity + spectrometer
 - It is the robust diagnostic method for characterizing the <u>transverse-</u> <u>longitudinal correlations for the beam manipulations</u> (e.g., EEX, DEEX*)

*Emittance Exchange beamline, Double EEX beamline

Acknowledgements

Eric

Scott Doran

Wanming Liu

Gongxiaohui Chen

Charles Whiteford

Auralee Edelen*

Philippe Piot*

Northern Illinois University

SLACE ACCELERATOR LABORATORY

Juan Pablo **Gonzalez-Aguilera***

THE UNIVERSITY OF CHICAGO

Work supported by

- US DOE No. DE-AC02-06CH11357 and No. DE-AC02-76SF00515
- U.S. National Science Foundation under the award PHY-1549132, the Center for Bright Beams.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award BES-ERCAP0020725.

