PAL-XFEL beamline status and plans

Intae Eom

November 14, 2023

PAL-XFEL beamline instruments

XSS NCI FXS / FXL CXI / SFX	НХ		
FXS/FXL CXI/SFX	XSS	NCI	
	FXS/FXL	CXI / SFX	

Research highlights in 2023

2

Research highlights in 2023

PAL-XFEL user operation statistics

Beamtime shifts (1 shift = 12 hours)

023 PAL-XFEL beamline	operation		Year	User operation	Regular beamtime	R&D beamtime
		2023	190 days	140 days (Selected by KOSUA)	50 days (Selected by PAL)	
	Provided beamtime shifts					
Beamtime category	Beamtime category 2023		st 2023-2nd			
Regular beamtime (70 days per half year)	HX 82 shifts (24h support 12 days) SX 36 shifts		HX 104 s SX 36 shi	HX 104 shifts (24h support 34 days) SX 36 shifts		
R&D beamtime (1 st half 23 days, 2 nd half 27days)	R&D: 12 day Beamline M,	/s (12 shifts) /S: 11 days (1	l7 shifts)	Director's Potential New instr Screening Tutorial b Beamline	beamtime: 9 days (users: 6 days (12 shi rumentation: 3 days beamtime: 2 days (beamtime: 0.5 days (1 M/S: 6.5 days (13 sh	18 shifts) fts) (6 shifts) 4 shifts) I shift) hifts)

Science opportunities at PAL-XFEL

	HX	
	XSS	NCI
Research topics		Instrumentatio
Condensed matter physics and Material sciences		
Thermal / Non-thermal melting dynamics	FXS	СХІ
Phase transitions	RIXS (RXES)	WAXS
Phonon / Lattice dynamics	Bragg-CDI	
Spin/Charge/Magnetic properties	51088 021	
Chemical sciences		
Bond dissociation / Formation / Isomerization		XANES
Charge transfer / Recombination / Localization	FXL	XES
Chemical reaction / Catalytic reaction		
Structural biology and Macromolecular dynamics		
Protein ternary structure / Active site of enzyme / Ligand binding site		CEV
Photo-induced / Mixing-induced macromolecular dynamics		Эгл
Structures at a molecular level		

6

			нх		
			XSS	NCI	
SS)			FXS/FXL	CXI / SFX	
(S	XAS/XES				

Next science drivers for PAL-XFEL beamline sciences

7

: Mixing and Injecting system

Dr. Chun's presentation in PX6

Dr. Nam's presentation in PX7

Dr. Park's presentation in PX8

Sample environments for quantum material research at FXS, RSXS

• High T sample holder

• Low temperature/High Magnetic field (9 T, 4 Kin collaboration with PSC

- Cryostream with a goniometer (40 – 300 K)
- Low-temperature diffraction chamber for Tender X-rays in collaboration with Sogang Univ.

to be commissioned in 2023

8

RSXS sample environments

- 6-axis cryostat manipulator

۲

- Base T_{sample} ~20 K (liquid helium)
- Avalanche photodiode detector 0-D point detector
- Horizontal linear polarized X-ray
- Horizontal sample (θ) and detector (2θ)
 rotation (π-polarization configuration)

Plan: Controllable magnetic field
 2D detector (AXIS)
 Pump option (THz, Mid-IR)

Multiplexing CXI experiment

Multi-probe by a single X-ray pulse
• SAXS: morphological information at nanoscale resolution
- JUNGFRAU 4M
• WAXS: atomic-scale structural information
- Two 0.5M Jungfrau detectors
- Two-theta is fixed; 30±7°
 azimuth angle: ~38 % covered by two detectors
- JUNGFRAU 5M with center hole
• XES: electronic structure
- Von Hamos spectrometer : Si(111) and Si(220)
- 0.5M Jungfrau detector
- acceptable 2θ range: 45 ~ 61°
- JUNGFRAU 0.5M

XES

211122_Au_-65-100

fs X-ray emission spectroscopy to reveal a hidden spin state

Courtesy of Prof. T. W. Kim at Mokpo univ.

	Strong	Weak
XAS	Sensitive to redox state Easy to measure	Hard to identify spin state
XES	Sensitive to spin state	Hard to measure transient signal

Fourier transform holography (SX)

Dr. Sanghan Park

Time-resolved soft X-ray image (Spectroscopic imaging)

Sample temperature: RT~150 °C

Spatial resolution: <100 nm **Temporal resolution: ~150 fs**

Electromagnet and low-temperature sample stage will be introduced later.

nature physics

Article

Light-induced insulator-to-metal phase transition dynamics in VO₂ by FTH

Johnson et al., Nature Physics 19, 215 (2023)

https://doi.org/10.1038/s41567-022-01848-w

Ultrafast X-ray imaging of the light-induced phase transition in VO₂

X-ray optics update

Nano-focused KB mirror (HX/SX)

- Coating: Ir (50 nm), non-coated (Quartz) •
- Focal length: 910mm (H), 600 mm (V)
- Working distance: 450 mm •

Focused beam profiles @ 9.5keV

Dr. Daewoong Nam

Diffraction image from 50 nm **Gold nanoparticle**

- X-ray: 5 keV •
- Focus size: 500 nm (H) x 650 nm (V)

Position (µm)

12

Nano-focused CRL (portable)

Dr. Sangsoo Kim

Sample deliveries for Macromolecular dynamics

Dr. Jaehyun Park

Photo-induced dynamics •

- **Optical laser pump (& dump)**
- **Photo-induced structure changes**
- Users from ASU, LBNL, Imperial College

London, SwissFEL, etc.

** **Molecular reaction dynamics**

- Solution mixing and X-ray probe
- Ligand binding @ active sites
- **Enzyme reactions**
- Drug target

13

Collaboration: Diamond Light Source,

European-XFEL, etc.

Sample handling strategies for SFX

Liquid injection

Conventional techniques (phase 1)

- GDVN liquid jet injection (PSD)
- LCP injection (CMD)

Miscellaneous

 Direct injection with Hamilton syringe (MLV syringe)

Fixed target

- Stage based control (phase 2)
 - 2D fixed target: micro-mesh
 - ID fixed target: micro-tubing

Mixing injection

Membrane proteins (LCP)

Mixing-High viscosity extruder
 Mixing-HVE injector
 Collaboration with European-XFEL SEC group

Soluble proteins

 Aperture-based mixing device (Si-chip with multi windows)
 Under development

Experimental applications of advanced FEL modes at PAL-XFEL

Experimental applications of advanced FEL modes at PAL-XFEL

Hard X-ray self-seeding

Two-color FEL generation

Courtesy of Dr. J.H. Lee & R. Ma at PAL-XFEL

Time-resolved XANES using Self-seeded FEL

Spin-crossover complex: photo-activated spin state conversion

Experimental condition

22nd International Advisory Committee Meeting (November 13-14, 2023)

Hard X-ray RIXS, RXES using Self-seeded FEL

1) RIXS: Incident energy *fixed*, Bragg angle *scanned*

2) RXES: Incident energy *scanned*, Bragg angle *fixed*

Courtesy of Dr. S.H. Chun & T.K. Choi at PAL-XFEL

"Resonant X-ray emission spectroscopy using self-seeded hard X-ray pulses at PAL-XFEL", JSR 2023

- Crystal: 16 x Si (111), (220), (531)

X-ray microscopy with self-seeding beam

- Bright Field X-ray Microscopy Image at E=10keV (without DCM)
 - CRLs objective lens: 37 EA (with radius of curvature 50um)
 - -magnification: x21
 - -seed-beam shows much better signal-to-noise ratio

background from CRLs itself

Observing ultrafast structural change in metals by two-color XFELs

2nd Hard X-ray undulator line of PAL-XFEL

Construction plan for 2nd Hard X-ray undulator line of PAL-XFEL

	HX1	HX2	SX1
Undulator period, mm	26	35	35
Undulator K (max)	1.87	3.5	3.5
FEL photon energy, keV	6.5 ~ 20	2.0 ~ 10.0	0.3 ~ 1.2
Specialized range, keV	9~15 keV(>1 mJ)	2 ~ 8 keV (> 3 mJ)	

- 20 undulator units & 2 experimental hutches (HX2) ullet
- HX2 undulator parameter will be the same as SX1
- 2 20 keV photon energies are available both on HX1 & HX2 \bullet (Specialized range is different.)

The ultimate effect of building HX2

HX2 allows...

- An increased acceptance rate of HX user experiments with higher user demand. (Broaden XFEL user base and Attracting new users)
- Dedicated and specialized science programs of the PAL-XFEL.
- To operate 3 independent FEL lines (HX1, HX2 & SX) through the multi-beamline operation mode. (Increased user beamtimes of all FEL lines as a result)

Plans for the HX hutches and instrumentations with HX2

- Construction period, including commissioning (estimated)

Thanks to:

All PAL-XFEL Staff and Users

