Beamline Renovation: New HRPD-II Program of BL4B

Young Hwa Jung

November 13, 2023

Beamline Renovation Project

- * Proposal to renovate an existing beamline and convert analysis techniques
- Switching the existing BM(bending magnet) beamline which has been in operation over 15 years

to new analytical techniques for user requirement and research competitiveness

1

4B X-ray Microdiffraction beamline ('02~'23)

 \rightarrow 4B High Resolution Powder Diffraction-II beamline ('27~

Introduction of HRPD-II beamline

Needs for NEW PD beamline

- One of the techniques with the highest user demand for academic and industrial field
- Only one beamline (9B HRPD) is dedicated to PD experiments among the 36 beamlines of PLS-II.
- A new PD beamline with fast data acquisition capable of real-time experiments and various environmental experiments is required.

HRPD Gen. I Multi-detector system with analyzer crystals

- : Extremely high angular resolution but slow
- Angular resolution < 0.015° (9B)
- Long measurement time ≈ 2h for Rietveld Refinement Analysis
- Bragg-Brentano geometry
- Large amount of samples required

Figure 2. HRPD detector systems

HRPD Gen. II 1D Micro-strip detectors (MYTHEN) : High angular resolution and fast

- Angular resolution $\approx 0.02^{\circ}0.03^{\circ}$
- Fast data acquisition < 5 min. \rightarrow High throughput by using robotic arms
- **Transmission geometry**
- Tiny samples (in a capillary tube) with high S/N ratio

Beamline Renovation Project Overview

✤ 4B HRPD-II beamline

- Meet for energy/environmental materials research and industry samples
- Focusing optics and 1D microstrip detector system for fast data acquisition
- New HRPD-II program can distribute PD user beamtime and expand new research groups
- Total budget : 3 billion won (\$ 2.2 million)

Year	Plan
1st year ('23)	Beamline CDR & TDR review, National budget review
2nd year ('24)	Completion of beamline drawing, Radiation safety assessment, FE/PTL rearra
3rd year ('25)	Optics (M1, M2, DCM) installation and alignment
4th year ('26)	End-station/Controls/DAQ completion and commissioning
2027~	Starting user service

Figure 3. HRPD-II beamline project plans

POHANG ACCELERATOR LABORATORY

Science and Application 1

Crystal structure analysis from high resolution powder X-ray diffraction patterns

- Structure determination of new powder samples
- Structure refinement of polycrystalline materials
- Quantitative phase analysis of multiphase materials
- Tracing phase transition process from crystalline lattice changes

PAL POHANG ACCELERATOR LABORATORY

Science and Application 2

* In situ (Operando) experiments

- Understanding phase transformation mechanism during real-time/environmental experiments
- : temperature, gas adsorption/desorption, photo/electrochemical reaction
- Time-resolved synchrotron powder X-ray diffraction studies (sub-minute scale)

PAL POHANG ACCELERATOR LABORATORY

Science and Application 3

- Structure analysis of radiation-damaged/non-ambient samples
- ***** A tiny amount of sample (mg scale) measurement
- Materials screening & designed based on high throughput SPXRD data
- SPXRD data for industrial mass production powders

Figure 10. An example of powder samples in a capillary tube for transmission mode SPXRD

7

Optics design 1. Mirrors

Collimating mirror (M1)

- Cylindrical mirror with water cooling for vertical collimation
- Rh on Pt coating, Si substrate, Upward
- Grazing incidence angle 2.5 mrad

Focusing mirror (M2)

- Toroidal mirror for vertical/horizontal focusing
- Rh on Pt coating, Si substrate, Downward
- Grazing incidence angle 2.5 mrad
- Vertical focal length 10 m
- Horizontal focusing 2.1:1

Figure 14. Mirror design for BL4B (in progress)

Optics design 2. DCM

Optical Parameters		
First crystal	Si(111) / Si(311) Footprint: 20 mm (H) x 35 mm (V), Water-cooling	
Second crystal	Si(111) / Si(311)	
Beam size	35 mm (H) [2 mrad in horizontal] x 2.5 mm (V) [0.2 mrad in vertical]	
Beam offset	25 mm upward, fixed-exit	
X-ray energy	8 - 25 keV, Si(111) Bragg angle 4-15° 20 - 30 keV, Si(311) Bragg angle 7-11°	

9

Figure 14. PAL DCM design for BL4B (in progress)

Optics design 3. Angular resolution

* Δ2θ (FWHM) with focusing optics in PD beamline

 $\Delta^2(2\theta) = (\Delta \tau_p^2 + \Delta_m^2/2)(\tan \theta_a / \tan \theta_m - 2 \tan \theta / \tan \theta_m)^2 + \Delta_a^2 + \Delta \tau_f^2$

 $\Delta \tau_{p}$: beam divergence after reflection on the collimating mirror $\Delta \tau_{f}$: beam divergence after reflection on the refocusing mirror Δ_{m} , Δ_{a} : Darwin widths of monochromator and analyzer crystal θ_{m} , θ_{a} : Bragg angles of monochromator and analyzer crystal

Figure 15. Computation of the instrumental resolution function (IRF) without and with focusing optics

Beamline ray tracing (@ 15keV)

Experimental station 1. MYTHEN2 module

MYTHEN2 (Microstrip sYstem for Time rEsolved experimNts) detector

- Operating in single-photon-counting type
- Consisting of 1280 silicon microstrips with strip size of 50 μm

BL4B HRPD-II requirements		
Energy range	8-30 keV	
Efficiency at 15 keV	> 70 %	
Angular resolution ($\Delta 2\theta$)	≤ 0.01°	
Angular coverage (2θ)	80°	
Number of MYTHEN2 modules	16	
Channels per module	1280	
Sample to Detector distance	760 mm (~0.004° intrinsic resolution)	
Frame rate (MYTHEN2 single)	100-900 Hz	
Multi-analyzer-crystal (MAC)	3 Ge(111) with 3 scintillation detectors + slit- and anti-scatter system	

Figure 16. MYTHEN2 in PD beamline at Australian Synchrotron

Experimental station 2. 3-circle diffractometer

- Specially designed 3-circle diffractometer for 4B HRPD-II beamline
- Double axis goniometer system (inner rotation platform & middle rotation platform, $\omega \ge 2\theta$) + One-circle goniometer (202)
- Detector housing for radial arrangement of MYTHEN2x16K,

offset between modules for gapless data including mounting, support on detector circle and counterweight

- MAC (Multi-Analyzer-Crystal) System
- : required to design for HRPD-II beamline, compact system with Ge(111) analyzer crystals with detector array, simultaneous AC/detector rotation, slit- and antiscatter system, sealed housing for MAC system

Figure 17. An example of 3-circle diffractometer with MYTHEN2 and MAC detector systems design for BL4B (in progress)

Experimental station 3. Sample environments

Transmission geometry for PD experiments

- Sample spinners for capillary & flat plates
- Gas-flow cell
- Hot air blower (for capillary)
- Cryostream
- Heating furnace
- In situ battery stage
- Auto sample changer with a robotic arm (phase2)
- \rightarrow automation set-up

Cryostream

Thanks to:

Jangwoo Kim, Sang Hun Kim, Ho-Young Kim, Chun Kil Ryu, Kyunghyun Ku, Yoonsun Lee, In Deuk Seo, Sang Woo Kim, Dongtak Jeong, Byeong-Gyu Park, So Yong Lee, and Hyun Hwi Lee

