R&D status of PAL-XFEL

Chi Hyun Shim on behalf of PAL-XFEL beam physics group

November 14, 2023

Contents

- **❖** Attosecond soft X-ray FEL
- **❖** Terawatt-scale hard X-ray FEL
- **❖** Two-color XFEL with time delay and pulse duration control
- **Time-synchronized two-color XFEL using phase shifters**
- * R&D future plan

Attosecond soft X-ray FEL

E-SASE method

Layout for attosecond XFEL at PAL-XFEL

Planning a High-Power Laser System for SX-FEL

Laser clean room for SX-attos FEL

LD pumped laser oscillator

Ti:sapphire Pump beam shaping section in x 10⁻³ X-axis beam size (m out L4 in L2 L3 X-axis beam size (m) 1 -0.05 0.2 0.4 0.6 8.0 0 2 Position(mm) Y-axis beam size (m) Position(m) x 10⁻³ x 10⁻⁴ 0.5 -0.5 0.6 8.0 0.2 0.4 0 Position(m) Position(mm)

Pump beam shaping calculation

Laser amplifiers (now being developed)

Regenerative amplifier

LD oscillator

2.5 nJ, ~200 fs @ 79.3 MHz

pump laser

(15 mJ @ 120 Hz)

~ 500 ps, 5 mJ @ 120 Hz

Single pass amplifier

~300 fs, ~10 mJ @120 Hz

FEL simulation results (GENESIS)

*E*_{beam}: 3.15 GeV

I_{base}: 3 kA

 $\sigma_{\rm E}$: 1.02 MeV (at 3 kA)

 λ_{mod} : 1.6 μ m

 $K_{\rm w}$: 26.32

 $\epsilon_{\rm n}$: 0.4 mm-mrad

 $\lambda_{\rm r}$: 1 nm (1240 eV)

 $\lambda_{\rm u}$: 35 mm

 $L_{\rm u}$: 4.97 m (142 $\lambda_{\rm u}$)

FEL simulation results (**GENESIS**)

Terawatt-scale hard X-ray FEL

Terawatt-scale hard X-ray FEL

- Increase FEL intensity at photon energies lower than 10 keV by increasing E_{beam} with larger of K 3.5 (1.87 for HX1)
- Expand new operation modes by applying laser modulation scheme such as terawatt (TW) scale x-ray, attosecond x-ray, and etc.

• TW- XFEL: Laser modulation section:

Peak current enhancement by enhanced SASE scheme using the laser modulation of electron beam

Electron beam manipulation with external laser

Enhanced peak current spike

Density modulation after modulator with the laser having a wavelength of $18\mu m$

Enhance peak current after chicane with a duration of 5 fs, peak current of 15 kA

Energy spread vs Peak current

3D FEL gain length vs peak current

C. H. Shim, et al., Sci Rep 10, 1312 (2020).

FEL simulation results (SIMPLEX)

Electron beam		
Photon energy	5 keV	7 keV
e-beam energy	11 GeV	11 GeV
Peak current	15 kA	15 kA
Pulse length (FWHM)	5 fs	5 fs
Energy spread	5 x 10 ⁻⁴	5 x 10 ⁻⁴
Undulator K	3.5	2.7
# of undulator	30	30
Tapering undulator start	5	10
Self-seeding parameters		
Crystal type	[110]	[110]
Bragg orientation	220	220
Crystal thickness	30 μm	100 μm
Time delay	22 fs	16.5 fs

high-resolution, single molecule imaging, strong field physics, nonlinear x-ray science

Two-color XFEL with time delay and pulse duration control

undulator section for lasing pump pulse (8 undulators) magnetic chicane (delay control) e-beam pump X-ray probe X-ray delay delay

e-beam delay

✓ By utilizing variable gap undulator and dipole magnet for self-seeding section, two-color pump-probe XFEL pulses can be generated from single electron bunch

pump X-ray

(SASE)

e-beam

✓ Time delay between pump and probe pulse can be controlled by changing the current of the dipole magnet (max. time delay is 120 fs)

probe X-ray

(SASE)

pump X-ray

(SASE)

Two-color XFEL for user service

For user service (2023.6.8~6.9)

- ✓ Pulse duration is measured by using intensity autocorrelation with magnetic chicane installed in the self-seeding section.
- ✓ We assumed that the XFEL pulse is a Gaussian pulse.
- ✓ Pulse duration according to SF position is measured by using single-color SASE XFEL

Time-synchronized two-color XFEL using phase shifters

Phase shifter between undulators

$$s = \frac{1}{2\gamma^2} \left(L_{int} + \left(\frac{e}{mc} \right)^2 \cdot PI_{PS} \right) = n \times \lambda_u$$

To match the phase between FEL pulse and electron beam

Time-synchronized two-color XFEL

Spectrum calculation (low gain theory)

Assume that 2 undulators and 1 phase shifter are used

3D simulation (GENESIS)

Only linear undulator tapering is applied

1D simulation (coded by Dr. M.-H. Cho)

in-phase vs. out-of-phase condition

in-phase (normal condition) phase=0 density [A.U.] 10⁰ 0.003 10⁻¹ b=0.066 (b) (a) 0.002 10-2 (d) (c) energy [m]] 10⁻³ 0.001 10-4 ┙ 0 10⁻⁵ 0.8 -0.001 0.6 10⁻⁶ 0.4 10⁻⁷ -0.0020.2 10⁻⁸ -0.003 0 102030405060 4 5 6 2 3 0 1 phase [rad] z [m] 0.003 0.003 b=0.285 b = 0.593(d) 0.002 0.002 0.001 0.001 \Box \Box 0 0.8 0.6 8.0 -0.001 -0.001 0.6 0.4 0.4 -0.002 -0.002 0.2 0.2 -0.003 -0.003 4 5 6 4 5 6 0 1 3 0 1 2 phase [rad] phase [rad]

out-of-phase (time-synchronized two-color XFEL mode)

Experimental results

- The optimal condition (max. FEL intensity) is considered as 'in-phase' condition.
- Out-of-phase condition is set by applying shifting phase to all phase shifters.

R&D future plan

- **❖** Beam manipulation by using laser heater
 - Laser collimator
 - Short pulse operation
- **❖** Installation of additional corrugated pipe at HX1
 - Phase-locked self-seeding FEL with slotted foil (collaboration with SwissFEL)
- * Research on deflector using wakefield
 - To diagnose longitudinal electron beam properties
- **❖** Virtual machine / Machine learning

Thanks to:

All members in PAL-XFEL and domestic/international collaborators

