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Machine Learning

| ML Tutorial | Annika Eichler

Definition

• Use and development of 

computer systems that are able 

to learn and adapt without 

following explicit instructions, by 

using algorithms and 

statistical models to analyze 

and draw inferences from 

patterns in data.

• Subfield of artificial intelligence

https://www.intel.com/content/www/us/en/developer/to

pic-technology/artificial-intelligence/overview.html



Page 3

History of AI

| ML Tutorial | Annika Eichler

(5) (PDF) State-of-the-Art Mobile Intelligence: Enabling 

Robots to Move Like Humans by Estimating Mobility with 

Artificial Intelligence (researchgate.net)

https://www.researchgate.net/publication/323591839_State-of-the-Art_Mobile_Intelligence_Enabling_Robots_to_Move_Like_Humans_by_Estimating_Mobility_with_Artificial_Intelligence/figures?lo=1&utm_source=google&utm_medium=organic
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ML for accelerators
How it developed

ICFA Workshop on Machine Learning for Charged Particle 

Accelerators 

• 2018, SLAC, US

Machine Learning Applications for Particle Accelerators | 

This is the Site Slogan (stanford.edu)

• 2019, PSI, Switzerland

2nd ICFA Workshop on Machine Learning for Charged 

Particle Accelerators (February 26, 2019 - March 1, 2019) 

· Indico (psi.ch)

• 2022, Brookhaven, US

3rd ICFA Beam Dynamics Mini-Workshop on Machine 

Learning Applications for Particle Accelerators (bnl.gov)

Seminar series OWLE (The One World charged particle 

accelerator Colloquium & Seminar Series)

• OWLE Seminar Series - Past ML Seminars (google.com)

• OWLE Seminar Series - Past Colloquiums (google.com)

| ML Tutorial | Annika Eichler

https://conf.slac.stanford.edu/icfa-ml-2018/
https://indico.psi.ch/event/6698/timetable/?view=standard_numbered
https://www.bnl.gov/mlaworkshop2022/
https://sites.google.com/view/owle/past-ml-seminars
https://sites.google.com/view/owle/past-colloquiums


Brief introduction ML 
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Machine Learning
Types and processes

Machine Learning

Supervised Learning
Inputs and outputs are known (labeled data)

Unsupervised Learning
Inputs are known (unlabeled data)

Reinforcement Learning
trial and error (learning from interactions with 

the environment)

https://medium.com/@varunachary96/an-overview-about-machine-learning-882c20df944d

• Labeled or classified data for training

• Apply what has been learned in the 

past to new data using labeled data to 

predict future events. 

• Neither classified nor labeled data for 

training

• Infer a function to describe a hidden 

structure from unlabeled data

• Interacts with its environment by producing 

actions and discovers feedback errors or 

rewards

• Trial and error search to automatically 

determine the ideal behavior within a specific 

context in order to maximize its performance. 

| ML Tutorial | Annika Eichler
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Machine Learning
Types and processes

Machine Learning

Supervised Learning
Inputs and outputs are known (labeled data)

Unsupervised Learning
Inputs are known (unlabeled data)

Reinforcement Learning
trial and error (learning from interactions with the 

environment)

Classification
discrete outputs

Regression
continuous outputs

Clustering
finding relationship 

among data points

Association
finding relationship 

among features of data 

points

7 of the Most Used Regression Algorithms and How to 

Choose the Right One | by Dominik Polzer | Towards Data 

Science

| ML Tutorial | Annika Eichler

https://towardsdatascience.com/7-of-the-most-commonly-used-regression-algorithms-and-how-to-choose-the-right-one-fc3c8890f9e3
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• Hierarchical clustering

• K-means clustering

• PCA

• t-SNE

• Apriori algorithm for association

• Autoencoder

• Anomaly detection

• Dimensionality reduction

• Isolation forest

• Linear & logistic regression

• Support vector machines

• Random forest

• Neural networks

• Decision trees

• Naïve Bayes

• Nearest neighbor

Machine Learning
Types and processes

Machine Learning

Supervised Learning
Inputs and outputs are known (labeled data)

Unsupervised Learning
Inputs are known (unlabeled data)

Reinforcement Learning
trial and error (learning from interactions with the 

environment)

Classification
discrete outputs

Regression
continuous outputs

Clustering
finding relationship 

among data points

Association
finding relationship 

among features of data 

points

• Model-free RL

• Model-based RL (learn the model/given the 

model)

• Policy optimization

• Q-learning

| ML Tutorial | Annika Eichler
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Machine Learning vs Control

• Control theory is a branch of Applied Mathematics 

dealing with the use of feedback to influence the 

behavior of a dynamical system in order to 

achieve a desired goal.

• A control algorithm is a mathematical-

logical action specification for the work of a 

controller.

Feedback

• Corrective action in case of set point deviation.

• Requires minimal knowledge about the system.

• No predictive control action to compensate for the 

effects of known or measurable disturbances.

| ML Tutorial | Annika Eichler

Basics of control

Output
System

Feedback 

Controller

Input

Disturbance

Feedforward 

Controller

Estimator

Feedforward

• Measures disturbances variables and take 

corrective proactively.

• Disturbance variables must be measured on-line

• Approximate process model should be available.
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Machine Learning vs Control

| ML Tutorial | Annika Eichler

They are not so different

Machine 

Learning

Supervised Learning
Inputs and outputs are 

known (labeled data)

Unsupervised 

Learning
Inputs are known 

(unlabeled data)

Control
Reinforcement 

Learning
trial and error (learning from 

interactions with the 

environment)

Classical control

Robust control

Adaptive control

Hierarchical control

Model predictive

control

Optimal control

Estimation
Kalman filter, Bayes estimation
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Machine Learning vs Control

| ML Tutorial | Annika Eichler

Optimization and Stochastics

Machine 

Learning

Supervised Learning
Inputs and outputs are 

known (labeled data)

Unsupervised 

Learning
Inputs are known 

(unlabeled data)

Control
Reinforcement 

Learning
trial and error (learning from 

interactions with the 

environment)

Classical control

Robust control

Adaptive control

Hierarchical control

Model predictive

control

Optimal control

Estimation
Kalman filter, Bayes estimation

Stochastics

Mathematical Optimization

Bayesian optimization



ML for controlling 

accelerators
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ML for Accelerators
What are the most important fields?

[1811.03172] Opportunities in Machine Learning for Particle Accelerators (arxiv.org) 2018

• Understanding physics

• Find new correlations of 

parameters

• Identify relevant data 

channels

→ New physical insight

Data

analysis

Surrogate models

→ Models for online control 

and optimization, and for 

accelerator design

Virtual diagnostics

→ Additional, nondestructive, 

(online) information

Estimating and predicting

• Exploit data to retrieve 

desired machine settings

• Push the way of operation

• Optimize performance

→ Better performance for 

users

• Predict & prevent failures

• Protect the system

• Identify poor conditions 

• Find the root cause of 

errors encountered

→ Improve the availability/ 

reliability of machine 

operation

Fault

diagnosis

Tuning and control

| ML Tutorial | Annika Eichler

https://arxiv.org/abs/1811.03172


Page 14

ML for Accelerators
What are the most important fields?

[1811.03172] Opportunities in Machine Learning for Particle Accelerators (arxiv.org) 2018

• Understanding physics

• Find new correlations of 

parameters

• Identify relevant data 

channels

→ New physical insight

Data

analysis

Surrogate models

→ Models for online control 

and optimization, and for 

accelerator design

Virtual diagnostics

→ Additional, nondestructive, 

(online) information

Estimating and predicting

• Exploit data to retrieve 

desired machine settings

• Push the way of operation

• Optimize performance

→ Better performance for 

users

• Predict & prevent failures

• Protect the system

• Identify poor conditions 

• Find the root cause of 

errors encountered

→ Improve the availability/ 

reliability of machine 

operation

Fault

diagnosis

Tuning and control

For data-based approaches (developing and testing)

For modeling and validation

| ML Tutorial | Annika Eichler

https://arxiv.org/abs/1811.03172
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ML for Accelerators
What are the most important fields?

[1811.03172] Opportunities in Machine Learning for Particle Accelerators (arxiv.org) 2018

• Understanding physics

• Find new correlations of 

parameters

• Identify relevant data 

channels

→ New physical insight

Data

analysis

Surrogate models

→ Models for online control 

and optimization, and for 

accelerator design

Virtual diagnostics

→ Additional, nondestructive, 

(online) information

Estimating and predicting

• Exploit data to retrieve 

desired machine settings

• Push the way of operation

• Optimize performance

→ Better performance for 

users

• Predict & prevent failures

• Protect the system

• Identify poor conditions 

• Find the root cause of 

errors encountered

→ Improve the availability/ 

reliability of machine 

operation

Fault

diagnosis

Tuning and control

For model-based approaches

For developing and testing

| ML Tutorial | Annika Eichler

https://arxiv.org/abs/1811.03172
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ML for Accelerators
What are the most important fields?

[1811.03172] Opportunities in Machine Learning for Particle Accelerators (arxiv.org) 2018

• Understanding physics

• Find new correlations of 

parameters

• Identify relevant data 

channels

→ New physical insight

Data

analysis

Surrogate models

→ Models for online control 

and optimization, and for 

accelerator design

Virtual diagnostics

→ Additional, nondestructive, 

(online) information

Estimating and predicting

• Exploit data to retrieve 

desired machine settings

• Push the way of operation

• Optimize performance

→ Better performance for 

users

• Predict & prevent failures

• Protect the system

• Identify poor conditions 

• Find the root cause of 

errors encountered

→ Improve the availability/ 

reliability of machine 

operation

Fault

diagnosis

Tuning and control

• Unsupervised Learning • Supervised Learning
• Supervised Learning

• Unsupervised Learning

• (Statistics/Control)

• Reinforcement Learning

• Optimization

• (Control)

| ML Tutorial | Annika Eichler

https://arxiv.org/abs/1811.03172


Algorithms …

| ML Tutorial | Annika Eichler
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• Hierarchical clustering

• K-means clustering

• PCA

• t-SNE

• Apriori algorithm for association

• Autoencoder

• Anomaly detection

• Dimensionality reduction

• Isolation forest

• Linear & logistic regression

• Support vector machines

• Random forest

• Neural networks

• Decision trees

• Naïve Bayes

• Nearest neighbor

Machine Learning
Types and processes

Machine Learning

Supervised Learning
Inputs and outputs are known (labeled data)

Unsupervised Learning
Inputs are known (unlabeled data)

Reinforcement Learning
trial and error (learning from interactions with the 

environment)

Classification
discrete outputs

Regression
continuous outputs

Clustering
finding relationship 

among data points

Association
finding relationship 

among features of data 

points

• Model-free RL

• Model-based RL (learn the model/given the 

model)

• Policy optimization

• Q-learning

Bayesian Optimization

| ML Tutorial | Annika Eichler
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Linear Regression

𝑥: independent variables (inputs)

𝑦: dependent variables (outputs)

Function model: ℎ 𝑥 = 𝑏 + 𝑤𝑥

𝑏 : bias

𝑤 : weight

Find 𝑏 and 𝑤 such 𝑟𝑖 = ℎ 𝑥𝑖 − 𝑦𝑖 is as small as 

possible for all 𝑖

min
𝑏,𝑤

1

2


𝑖=1

𝑛

(ℎ 𝑥𝑖 − 𝑦𝑖)
2)

| ML Tutorial | Annika Eichler

Fit a linear function to the data points (𝑥𝑖 , 𝑦𝑖)

Loss (cost) function

𝐽(𝑏, 𝑤)

𝑏
𝑤 = Δ𝑦/Δ𝑥
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Nonlinear Regression

𝑥: independent variables (inputs)

𝑦: dependent variables (outputs)

Function model: ℎ 𝑥 = 𝑏 + 𝑤𝜙(𝑥)

𝑏 : bias

𝑤 : weight

Find 𝑏 and 𝑤 such 𝑟𝑖 = ℎ 𝑥𝑖 − 𝑦𝑖 is as small as 

possible for all 𝑖

min
𝑏,𝑤

1

2


𝑖=1

𝑛

(ℎ 𝑥𝑖 − 𝑦𝑖)
2)

| ML Tutorial | Annika Eichler

Fit a nonlinear function to the data points (𝑥𝑖 , 𝑦𝑖)

Loss (cost) function

𝐽(𝑏, 𝑤)

𝑏
𝑤 = Δ𝑦/Δ𝑥
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Example

• One dimensional function: ℎ 𝑥 = 𝑤𝑥 + 𝑏: ℝ → ℝ

• 10 measurements available:

• Inputs: 𝑥1 , 𝑥2, … , 𝑥10

• Outputs:  𝑦1 , 𝑦2, … , 𝑦10

• Loss function: min
𝑏,𝑤

1

2
σ𝑖=1
10 (ℎ 𝑥𝑖 − 𝑦𝑖)

2)

• Taking the derivative leads to the linear least 

square problem

𝑦1 𝑦2… 𝑦10 = 𝑤 𝑏
𝑥1 𝑥2… 𝑥10
1 1 … 1

• Solution 

𝑤 𝑏 = 𝑦1 𝑦2… 𝑦10 /
𝑥1 𝑥2… 𝑥10
1 1 … 1

| ML Tutorial | Annika Eichler

Linear regression
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Example

• One dimensional function:

ℎ 𝑥 = 𝑤1 𝑥
2 + 𝑤2 𝑥 + 𝑏: ℝ → ℝ

• 10 measurements available:

• Inputs: 𝑥1 , 𝑥2, … , 𝑥10

• Outputs:  𝑦1 , 𝑦2, … , 𝑦10

• Loss function: min
𝑏,𝑤

1

2
σ𝑖=1
10 (ℎ 𝑥𝑖 − 𝑦𝑖)

2)

• Taking the derivative leads to the linear least square 

problem

𝑦1 𝑦2… 𝑦10 = 𝑤1 𝑤2 𝑏
𝑥1
2 𝑥2

2 … 𝑥10
2

𝑥1 𝑥2 … 𝑥10
1 1 … 1

• Solution:  𝑤1 𝑤2 𝑏 = 𝑦1 𝑦2… 𝑦10 /
𝑥1
2 𝑥2

2 … 𝑥10
2

𝑥1 𝑥2 … 𝑥10
1 1 … 1| ML Tutorial | Annika Eichler

Quadratic regression
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Example 

| ML Tutorial | Annika Eichler

Comparison so far
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The Most Simple Neural networks

| ML Tutorial | Annika Eichler

The Perceptron

𝑥1

𝑥2

𝑥3

ො𝑦

1

𝑏

𝑤1

𝑤2

𝑤3

Input layer

Neuron Output layer

Weighted sum

𝑧 = 𝑏 +

𝑖

𝑤𝑖𝑥𝑖

Activation function

𝑎 = 𝑓(𝑧)

Most used activation functions in Neural Networks - AI ML - Artificial Intelligence and Machine Learning 

(webyes.com.br)

https://ai-artificial-intelligence.webyes.com.br/most-used-activation-functions-in-neural-networks/
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Neural network

𝑎(1) = 𝑓(0)(𝑊(0)𝑋)

𝑎(2) = 𝑓(1)(𝑊(1)𝑋)

ො𝑦 = 𝑓(2) 𝑊(2)𝑎(2)

Find the weights that minimize the loss 

min
𝑊

𝐽(𝑊)

With any gradient-based optimizers:

Calculate gradients: 
𝜕𝐽(𝑊)

𝜕𝑊(2), 
𝜕𝐽(𝑊)

𝜕𝑊(1) =
𝜕𝐽(𝑊)

𝜕𝑊(2)

𝜕𝑎(2)

𝜕𝑊(1), …

| ML Tutorial | Annika Eichler

Multi layer network

𝑥1

𝑥2

𝑥3

1

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

1

𝑎1
(2)

𝑎3
(2)

𝑎3
(2)

1

ො𝑦1

ො𝑦2

ො𝑦1

Input layer Output layerHidden layers

𝑏(0), 𝑤(0) 𝑏(1), 𝑤(1) 𝑏(2), 𝑤(2)

Example: 𝑎2
(1)

= 𝑓2
(0)

𝑏2
0
+ σ𝑖𝑤𝑖,2

0
𝑥𝑖

𝑎(1) = 𝑓(0)(𝑊(0)𝑋)

Forward propagation

Back propagation
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Example continued

| ML Tutorial | Annika Eichler

Neural network

𝑧(1) =𝑏(0) + 𝑤(0)𝑥

𝑎(1) =
1

1+𝑒−𝑧
(1)

ො𝑦 = 𝑏(1) +𝑤(1) 𝑎(1)

Calculate gradients:
𝜕𝐽

𝜕 ො𝑦
= ෝ𝑦𝑖 − 𝑦𝑖 Update

𝜕𝐽

𝜕𝑤(1) =
𝜕𝐽

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑤(1) = (ෝ𝑦𝑖 − 𝑦𝑖)
′ 𝑎(1) 𝑤(1) ← 𝑤(1) − 𝜂

𝜕𝐽

𝜕𝑤(1)

𝜕𝐽

𝜕𝑏(1)
=

𝜕𝐽

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑏(1)
= (ෝ𝑦𝑖 − 𝑦𝑖)

′ 1 𝑏(1) ← 𝑏(1) − 𝜂
𝜕𝐽

𝜕𝑏(1)

𝜕𝐽

𝜕𝑤(0) =
𝜕𝐽

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑎(1)
𝜕𝑎(1)

𝜕𝑧(1)
𝜕𝑧(1)

𝜕𝑤(0) = (ෝ𝑦𝑖 − 𝑦𝑖)
′ 𝑤(1) 𝜕𝑓

𝜕𝑧(1)
𝑥 𝑤(0) ← 𝑤(0) − 𝜂

𝜕𝐽

𝜕𝑤(0)

𝜕𝐽

𝜕𝑏(0)
=

𝜕𝐽

𝜕 ො𝑦

𝜕 ො𝑦

𝜕𝑎(1)
𝜕𝑎(1)

𝜕𝑧(1)
𝜕𝑧(1)

𝜕𝑏(0)
= (ෝ𝑦𝑖 − 𝑦𝑖)

′ 𝑤(1) 𝜕𝑓

𝜕𝑧(1)
1 𝑏(0) ← 𝑏(0) − 𝜂

𝜕𝐽

𝜕𝑏(0)

𝑥

1

𝑧(1)

𝑎(1)

1

Input layer Output layerHidden layer

𝑏(0), 𝑤(0) 𝑏(1), 𝑤(1)

Forward propagation

Back propagationො𝑦

Activation function: f z = 𝜎 𝑧 =
1

1+𝑒−𝑧
𝜕𝑓

𝜕𝑧
= 𝜎 𝑧 (1 − 𝜎 𝑧 )

Loss function: J =
1

2
σ𝑖=1
10 ( ෝ𝑦𝑖 − 𝑦𝑖)

2)
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Example

| ML Tutorial | Annika Eichler

Neural network

Type equation here.
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Underfitting and Overfitting

Underfitting

• Increase model complexity

• Train for more epochs

Overfitting

• Get more data

• Data augmentation

• Early stopping

• Regularization (L1, L2)

• Dropout

• DropConnect

| ML Tutorial | Annika Eichler

How to deal with it

Techniques for handling underfitting and overfitting in Machine Learning | by 

Manpreet Singh Minhas | Towards Data Science

https://towardsdatascience.com/techniques-for-handling-underfitting-and-overfitting-in-machine-learning-348daa2380b9
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Neural network

Getting uncertainty to a neural network 

prediction → Robust prediction

Ensemble methods

• Random parameters initialization: 

• multiple networks are trained with different initial conditions

• Mean and variance are the mean and variance of the predictions

• Bagging

• Bootstrapping

• Neural network for each bootstrap samples

• …

Quantile regression

• Predict multiple quantiles with tilted loss function

• A separate network is trained  for each quantile

| ML Tutorial | Annika Eichler

Uncertainty quantification methods

Ensemble methods: bagging, boosting and stacking | by Joseph Rocca | Towards Data Science

https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
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Autoencoder

Unsupervised learning

→ Network tries to learn the original input

→ Loss function: 𝐿(𝑥, ො𝑥)

→ Bottleneck constraints the amount of 

information that can go through

| ML Tutorial | Annika Eichler

Neural networks continued

Introduction to autoencoders. (jeremyjordan.me)

Distance between 

estimates and input

https://www.jeremyjordan.me/autoencoders/
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Applications of Autoencoder

• Dimensionality reduction

• Denoising

• Add random noise to the input data

• Train the autoencoder to recover the original, 

nonperturbed signal

• Fault detection

• Data analysis 

• (beta-)variational Autoencoder

| ML Tutorial | Annika Eichler

What they are used for

If linear network, 

same results as PCA

(5) (PDF) Fully Convolutional Variational Autoencoder For Feature Extraction Of Fire Detection 

System (researchgate.net)

Autoencoders | Main Components and Architecture of Autoencoder (educba.com)

https://www.researchgate.net/publication/340049776_Fully_Convolutional_Variational_Autoencoder_For_Feature_Extraction_Of_Fire_Detection_System/figures?lo=1&utm_source=google&utm_medium=organic
https://www.educba.com/autoencoders/
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(Beta)-Variational Autoencoder 

Variational autoencoder (VAE)

• Instead of mapping the input into a fixed vector, we 

want to map it into a distribution in the latent space

Beta-variational autoencoder

• Get disentangled latent space variables

• Include deviation from a Gaussian normal distribution 

in loss

• Loss = Reconstruction Error + 𝛽 Disentanglement Error

| ML Tutorial | Annika Eichler

What does it do?
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Fault Diagnosis

| ML Tutorial | Annika Eichler

[1] Christ M, Braun N, Neuffer J, Kempa-Liehr AW. Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python packagAe). Neurocomputing. 2018;307:72-7

[2] Meng, Q., Catchpoole, D., Skillicom, D., & Kennedy, P. J. (2017, May). Relational autoencoder for feature extraction. In 2017 International joint conference on neural networks (IJCNN) (pp. 

364-371). IEEE.

Clustering and Outlier Detection

• Clustering algorithms aim to group data samples into classes with 

similar elements (faulty and healthy)

• Outlier detection algorithms aim to identify rare items or events that 

differ significantly from the rest of the dataset

Feature Extraction

• Dimensionality reduction of several signals

• Required for time-series data

• Automated time series feature extraction using the python package 

tsfresh [1]

• Feature extraction based on Neural network autoencoders [2]

Using Machine Learning

Courtesy: Arne Grünhagen
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K-means Clustering

Goal:

partition the observations into k sets such 

that the distance between cluster centroids 

points within a cluster is minimized 

(within-cluster sum of squares)

• Unsupervised iterative clustering technique

• Partitions the given data set into k distinct clusters

• Each point belongs to the cluster with nearest mean

Disadvantages

• k needs to be predefined in advance (alternative: DBSCAN, hierarchical clustering)

• No handling of noise, outliers

• Only convex clusters
| ML Tutorial | Annika Eichler

Dividing the entire data into clusters based on patterns

K Means Clustering | Gate Vidyalay

https://www.gatevidyalay.com/tag/k-means-clustering/
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Example

Initialization: choose randomly 

k data samples as centers

Data as seen before

1. Assigning to clusters: 

according to smallest distance

2. Assigning to clusters: 

according to smallest distance

3. Assigning to clusters: 

according to smallest distance

1. Updating centers: 

mean value of data in cluster

2. Updating centers: 

mean value of data in cluster

3. Updating centers: 

mean value of data in cluster

| ML Tutorial | Annika Eichler
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Isolation Forests

Idea: anomalies are the data points that are

“few and different”

Isolation tree:

• splits the data space using lines that are 

orthogonal to the origin

• Counts the number of splits needed for isolation, 

represents the path length from root to leaf in decision 

tree → fewer splits → higher anomaly score 

Isolation forest:

• Ensemble method using multiple isolation trees

• Averaging the path length over the multiple trees

• Requires the expected proportion of outliers 

(contamination factor)

| ML Tutorial | Annika Eichler

Outlier detection

(2) Point-Denoise: Unsupervised outlier detection for 3D point clouds enhancement | 

Request PDF (researchgate.net)

https://www.researchgate.net/publication/352017898_Point-Denoise_Unsupervised_outlier_detection_for_3D_point_clouds_enhancement/figures?lo=1
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Isolation Forests

| ML Tutorial | Annika Eichler

Outlier detection

Pathlength: ℎ 𝑥

Average path length: 𝐸(ℎ 𝑥 )

Normalization factor: 𝑐 𝑛 = 2𝐻 𝑛 − 1 − 2
𝑛−1

𝑛

Anomaly score: 𝑠 𝑥, 𝑛 = 2
−
𝐸(ℎ 𝑥 )

𝑐(𝑛)

Example: 

Average path length: 𝐸 ℎ =
4

3

Normalization factor: 𝑐 5 = 2.97

Anomaly score: 𝑠 , 5 = 2
−
𝐸(ℎ )

𝑐(5) = 0.73

Harmonic number

ℎ = 1 ℎ = 2 ℎ = 1
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Acquisition function 𝛼(𝑥)

• Determine the next query point as argmax
𝑥

𝛼(𝑥)

• Exploration vs. exploitation

• Often used

• Probability of improvement (PI)

• Expected improvement (EI)

• Upper confidence bound (UCB)

Bayesian Optimization

Black box function 𝑓(𝑥)

• Unknown function, no derivative information 

• Noisy samples can be drawn

• Samples are expansive

Surrogate model

• Probabilistic model: Gaussian processes 

• 𝑓 𝑥 ~ 𝐺𝑃(𝜇 𝑥 , 𝑘(𝑥, 𝑥′)) → Updated via Bayes Theorem

mean and covariance
| ML Tutorial | Annika Eichler

What is Bayesian optimization

Sequential global optimization algorithms to 

solve

max
𝑥

𝑓(𝑥)

by building a surrogate model.

Surrogate 

model

Courtesy: Jannis Lübsen
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Bayesian Optimization

Covariance function

𝑘 𝑥, 𝑥′ = 𝜎𝑘𝑅𝐵𝐹 𝑥, 𝑥′ + 𝜎𝑛

Radial basis function 

(squared exponential kernel)

𝑘𝑅𝐵𝐹 𝑥, 𝑥′ = 𝑒−
(𝑥−𝑥′)2

2𝐿

| ML Tutorial | Annika Eichler

Covariance function (kernel) 

How similar are two data points (𝑥, 𝑥′)?
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Bayesian Optimization – an illustrative Example

| ML Tutorial | Annika Eichler

• Expected improvement

• RBF kernel 

Courtesy: Jannis Lübsen
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Reinforcement Learning

| ML Tutorial | Annika Eichler

Training a control agent by trial and error

Reinforcement Learning (RL) 

A machine learning approach where a software agent learns iteratively a policy to act on an environment based 

on observations in order to solve a given task by maximizing a cumulative reward. 

Notation

State 𝑠𝑡 (observation 𝑜𝑡) 

Based on the observation of state 𝑠𝑡
the agent following the policy 𝜋

chooses an action 𝑎𝑡

𝜋 𝑠𝑡 = 𝑎𝑡

The action is applied the environment: 

Transitions from state 𝑠𝑡 → 𝑠𝑡+1

Reward 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡)

Learning: The policy is updated in order to maximize the cumulative reward over all successive steps (episode).
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Reinforcement Learning Algorithms

| ML Tutorial | Annika Eichler

A Taxonomy

Part 2: Kinds of RL Algorithms — Spinning Up documentation (openai.com)

Use existing model or learn a model 

and use it to guide decisions

Learn to find best actions without 

modeling the environment

Learn to predict 

how good actions are

Find the function that 

gives the best action

Proximal 

Policy 

Optimization

Twin Delayed Deep 

Deterministic Policy Gradients

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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TD3: Twin Delayed Deep Deterministic Policy Gradients

| ML Tutorial | Annika Eichler

How does it work?

• TD3 is an off-policy algorithm (each update can use 

data collected at any point during training, regardless of 

how the agent was choosing to explore the environment 

when the data was obtained).

• TD3 can only be used for environments with 

continuous action spaces.

Key features compared to predecessor (DDPG)

1. Using a pair of critic networks 2. Delayed updates of the actor 

TD3: Learning To Run With AI. Learn to build one of the most powerful… | by Donal Byrne | Towards 

Data Science

3. Action noise regularization

Courtesy: Jan Kaiser

https://towardsdatascience.com/td3-learning-to-run-with-ai-40dfc512f93


… and applications

| ML Tutorial | Annika Eichler
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ML for Accelerators
What are the most important fields?

[1811.03172] Opportunities in Machine Learning for Particle Accelerators (arxiv.org) 2018

• Understanding physics

• Find new correlations of 

parameters

• Identify relevant data 

channels

→ New physical insight

Data

analysis

Surrogate models

→ Models for online control 

and optimization, and for 

accelerator design

Virtual diagnostics

→ Additional, nondestructive, 

(online) information

Estimating and predicting

• Exploit data to retrieve 

desired machine settings

• Push the way of operation

• Optimize performance

→ Better performance for 

users

• Predict & prevent failures

• Protect the system

• Identify poor conditions 

• Find the root cause of 

errors encountered

→ Improve the availability/ 

reliability of machine 

operation

Fault

diagnosis

Tuning and control

• Unsupervised Learning • Supervised Learning
• Supervised Learning

• Unsupervised Learning

• (Statistics/Control)

• Reinforcement Learning

• Optimization

• (Control)

| ML Tutorial | Annika Eichler

https://arxiv.org/abs/1811.03172
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β-VAEs for Online X-ray Pulse Profile Reconstruction

Data

Longitudinal phase space images with different 

amount of lasing

Train a β-VAE

Get lasing as disentangled tuning knob in the latent 

space

X-ray Pulse Profile Reconstruction 

• Given a longitudinal phase space measurement 

with lasing

• Reconstruct the corresponding phase space 

without lasing

• Take the difference and reconstruct the X-ray 

power profile

Advantage

No X-ray power profiles are needed for training

Without having ever seen the X-ray profiles

G. Goetzke, et. al., “AI Methods for an improved evaluation of FEL diagnosic data”, Science@FEL

Reconstructed X-ray power profile

Simulated longitudinal phase space

lasing on

Predicted longitudinal phase space

lasing off

| ML Tutorial | Annika Eichler
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ML for Accelerators
What are the most important fields?

[1811.03172] Opportunities in Machine Learning for Particle Accelerators (arxiv.org) 2018

• Understanding physics

• Find new correlations of 

parameters

• Identify relevant data 

channels

→ New physical insight

Data

analysis

Surrogate models

→ Models for online control 

and optimization, and for 

accelerator design

Virtual diagnostics

→ Additional, nondestructive, 

(online) information

Estimating and predicting

• Exploit data to retrieve 

desired machine settings

• Push the way of operation

• Optimize performance

→ Better performance for 

users

• Predict & prevent failures

• Protect the system

• Identify poor conditions 

• Find the root cause of 

errors encountered

→ Improve the availability/ 

reliability of machine 

operation

Fault

diagnosis

Tuning and control

• Unsupervised Learning • Supervised Learning
• Supervised Learning

• Unsupervised Learning

• (Statistics/Control)

• Reinforcement Learning

• Optimization

• (Control)

| ML Tutorial | Annika Eichler

https://arxiv.org/abs/1811.03172
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Surrogate modeling for Optimization

• Argonne Wakefield Accelerator Facility (AWA)

• 5 input parameters

• 7 output parameters

• Goal: 

• Optimize the beam parameters with respect to the inputs

• Approach

• First train a neural network model on physics simulation

• Optimize on neural network model with a genetic algorithm (GA)

| ML Tutorial | Annika Eichler

ML for orders of magnitude speedup in multiobjective optimization of particle accelerator systems

A. Edelen et al., Machine learning for orders of magnitude speedup in multiobjective

optimization of particle accelerator systems, Phys. Rev. Accel. Beams 23 (2020).

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.044601
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Virtual Diagnostics
ML models infer measurements that cannot be measured

Invasive measurement blocks 

beam delivery -> cannot be 

measured

Non-invasive 

measurement of other 

diagnostic

Hanuka, A. et al., Accurate and confident prediction of electron beam longitudinal properties using spectral virtual diagnostics, Sci 

Rep 11, 2945 (2021).

Emma, C. et al., Machine learning-based longitudinal phase space prediction of particle accelerators, Phys. Rev. Accel. Beams 21, 

112802, 2018

Zhu, J. et al., Mixed Diagnostics for Longitudinal Properties of Electron Bunches in a Free-Electron Laser, Front. Phys., 22 July 2022

| ML Tutorial | Annika Eichler

https://www.nature.com/articles/s41598-021-82473-0
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.21.112802
https://www.frontiersin.org/articles/10.3389/fphy.2022.903559/full
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Invasive measurement blocks 

beam delivery -> cannot be 

measured

Non-invasive 

measurement of other 

diagnostic

| ML Tutorial | Annika Eichler

Virtual Diagnostics
Including Robustness

Owen Convery et al., Uncertainty quantification for virtual diagnostic of particle accelerators, 

Phys. Rev. Accel. Beams 24 (2021). 

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.074602
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Further Applications Estimation and Prediction

• Andreas Adelmann, On Nonintrusive Uncertainty Quantification and Surrogate Model Construction in Particle Accelerator Modeling, SIAM/ASA Journal on 

Uncertainty Quantification 7 (2019). 

• Leander Grech, Gianluca Valentino, and Diogo Alves, A Machine Learning Approach for the Tune Estimation in the LHC, Information 12 (2021). 

• A. Hanuka et al., Accurate and confident prediction of electron beam longitudinal properties using spectral virtual diagnostics, Scientific Reports 11 (2021). 

• Owen Convery et al., Uncertainty quantification for virtual diagnostic of particle accelerators, Phys. Rev. Accel. Beams 24 (2021). 

• A. L. Edelen et al., Neural Networks for Modeling and Control of Particle Accelerators, IEEE Transactions on Nuclear Science 63 (2016). 

• Auralee Edelen et al., Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems, Phys. Rev. Accel. Beams 23 

(2020). 

• C. Emma et al., Machine learning-based longitudinal phase space prediction of particle accelerators, Phys. Rev. Accel. Beams 21 (2018). 

• C. Xu et al, Surrogate Modelling of the FLUTE Low-Energy Section, Proc. 13th International Particle Accelerator Conference, Bangkok, Thailand (2022).

• J. Zhu, et al., Mixed Diagnostics for Longitudinal Properties of Electron Bunches in a Free-Electron Laser, Front. Phys., 22 July 2022.

• J Zhu et. al., High-Fidelity Prediction of Megapixel Longitudinal Phase-Space Images of Electron Beams Using Encoder-Decoder Neural Networks, Physical Review 

Applied 16 (2), 024005 (2021).

• A. Ivanov and I. Agapov, “Physics-based deep neural networks for beam dynamics in charged particle accelerators”, Physical Review Accelerators and Beams 23, 

07461 (2020).

• M. Kirchen et al., “Optimal beam loading in a laser-plasma accelerator“ PRL 126, 174801 (2021)

| ML Tutorial | Annika Eichler

For particle accelerator
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ML for Accelerators
What are the most important fields?

[1811.03172] Opportunities in Machine Learning for Particle Accelerators (arxiv.org) 2018

• Understanding physics

• Find new correlations of 

parameters

• Identify relevant data 

channels

→ New physical insight

Data

analysis

Surrogate models

→ Models for online control 

and optimization, and for 

accelerator design

Virtual diagnostics

→ Additional, nondestructive, 

(online) information

Estimating and predicting

• Exploit data to retrieve 

desired machine settings

• Push the way of operation

• Optimize performance

→ Better performance for 

users

• Predict & prevent failures

• Protect the system

• Identify poor conditions 

• Find the root cause of 

errors encountered

→ Improve the availability/ 

reliability of machine 

operation

Fault

diagnosis

Tuning and control

• Unsupervised Learning • Supervised Learning
• Supervised Learning

• Unsupervised Learning

• (Statistics/Control)

• Reinforcement Learning

• Optimization

• (Control)

| ML Tutorial | Annika Eichler

https://arxiv.org/abs/1811.03172
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Quench Detection using Clustering

• Quench detection at the European XFEL

• Pulsed-mode operation

• 808 nine-cell SRF cavities

• NO labels

• Features: Generalized likelihood ratio for residual from 

the physical model

• Clustering using k-means

| ML Tutorial | Annika Eichler

Together with “model-based” feature extraction

J. Branlard et. al., “Superconducting cavity quench detection and prevention for the 

European XFEL,” 16th International Conference on RF Superconductivity, 2013. 

nonlinear 

model

clustering

A Eichler, J Branlard, JHK Timm, “Anomaly detection at the European X-ray Free Electron 

Laser using a parity-space-based method”, Physical Review Accelerators and Beams 26 (1), 

012801 (2023)

J Branlard, A Eichler, J Timm, N Walker, “Machine Learning Assisted 

Cavity Quench Identification at the European XFEL”, LINAC’22, 2022

https://bib-pubdb1.desy.de/record/165651/files/DESY-2014-00617.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.012801?utm_source=email&utm_medium=email&utm_campaign=prab-alert
https://epaper.kek.jp/linac2022/papers/thpopa26.pdf
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Quench Detection using Classification

| ML Tutorial | Annika Eichler

Having labels

• Quench detection at Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab

• Continuous-mode operation

• 88 seven-cell SRF cavities

• Labels for several thousand fault events (different fault classes)

• Features: parameters of fitting a AR(5) model to

• accelerating gradient in the cavity

• rf drive voltage

• forward power

• relative phase between the rf voltage applied to the cavity 

and the electric field minus an offset phase

• Different classification approaches have been tried

Chris Tennant et al., Superconducting radio-frequency cavity fault classification using machine 

learning at Jefferson Laboratory, Phys. Rev. Accel. Beams 23 (2020).

Classification results

https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.114601
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Detection of faulty beam position monitors at LHC

• At LHC: 523 BPMs per plane and per beam

• Goal: unsupervised detection of faulty BPMs

• Features

• Betatron tune

• Amplitude of obtained FFT (scaled with respect to oscillation frequency)

• Noise to amplitude ratio

| ML Tutorial | Annika Eichler

With Isolation Forests

E. Fol et al., Detection of faulty beam position monitors using unsupervised learning, Phys. Rev. 

Accel. Beams 23 (2020)

https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.102805
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Further Applications in Fault Diagnosis

• G. Azzopardi and G. Ricci, New Machine Learning Model Application for the Automatic LHC Collimator Beam-Based Alignment, Proc. 18th Int. Conf. on Accelerator 

and Large Experimental Physics Control Systems, Shanghai, China, pp. 953–958 (2022). 

• E. Fol et al., Detection of faulty beam position monitors using unsupervised learning, Phys. Rev. Accel. Beams 23 (2020). 

• Chris Tennant et al., Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory, Phys. Rev. Accel. Beams 23 (2020). 

• A. Nawaz et al., Anomaly Detection for the European XFEL using a Nonlinear Parity Space Method, IFAC PapersOnLine 51 (2018). 

• Ayla Nawaz et al., Probabilistic model-based fault diagnosis for the cavities of the European XFEL, at -Automatisierungstechnik 69 (2021). 

• Sichen Li et al., A Novel Approach for Classification and Forecasting of Time Series in Particle Accelerators, Information 12 (2021). 

• E. Fol et al., Optics Corrections Using Machine Learning in the LHC, Proc. 10th International Particle Accelerator Conference, Melbourne, Australia, pp. 3990–3993 

(2019). 

• E. Fol et al., Machine Learning Methods for Optics Measurements and Corrections at LHC, Proc. 9th International Particle Accelerator Conference, Vancouver, 

Canada, pp. 1967–1970 (2018). 

• A. Grünhagen et al. "Fault analysis of the beam acceleration control system at the European XFEL using data mining." 2021 IEEE 30th Asian Test Symposium 

(ATS). IEEE, 2021.

• G. Martino et al. "Comparative evaluation of semi-supervised anomaly detection algorithms on high-integrity digital systems." 2021 24th Euromicro Conference on 

Digital System Design (DSD). IEEE, 2021.

• A. Eichler et. al., “Anomaly detection at the European X-ray Free Electron Laser using a parity-space-based method”, Physical Review Accelerators and Beams 26 

(1), 012801 (2023)

| ML Tutorial | Annika Eichler

For particle accelerator

https://accelconf.web.cern.ch/icalepcs2021/doi/JACoW-ICALEPCS2021-THPV040.html
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.102805
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.114601
https://www.sciencedirect.com/science/article/pii/S2405896318322468?via%3Dihub
https://www.degruyter.com/document/doi/10.1515/auto-2020-0064/html
https://www.mdpi.com/2078-2489/12/3/121
https://accelconf.web.cern.ch/ipac2019/doi/JACoW-IPAC2019-THPRB077.html
https://accelconf.web.cern.ch/ipac2018/doi/JACoW-IPAC2018-WEPAF062.html
Fault analysis of the beam acceleration control system at the European XFEL using data mining
https://ieeexplore.ieee.org/document/9556385
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.012801?utm_source=email&utm_medium=email&utm_campaign=prab-alert
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ML for Accelerators
What are the most important fields?

[1811.03172] Opportunities in Machine Learning for Particle Accelerators (arxiv.org) 2018

• Understanding physics

• Find new correlations of 

parameters

• Identify relevant data 

channels

→ New physical insight

Data

analysis

Surrogate models

→ Models for online control 

and optimization, and for 

accelerator design

Virtual diagnostics

→ Additional, nondestructive, 

(online) information

Estimating and predicting

• Exploit data to retrieve 

desired machine settings

• Push the way of operation

• Optimize performance

→ Better performance for 

users

• Predict & prevent failures

• Protect the system

• Identify poor conditions 

• Find the root cause of 

errors encountered

→ Improve the availability/ 

reliability of machine 

operation

Fault

diagnosis

Tuning and control

• Unsupervised Learning • Supervised Learning
• Supervised Learning

• Unsupervised Learning

• (Statistics/Control)

• Reinforcement Learning

• Optimization

• (Control)

| ML Tutorial | Annika Eichler

https://arxiv.org/abs/1811.03172
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Bayesian Optimization

LUX accelerator

Input parameters

• Laser energy (attenuator)

• Focus position (motorized lens of beam expander)

• Gas flows (N2, H2, H2)

| ML Tutorial | Annika Eichler

Of a Laser Plasma Accelerator

Objective function

𝑓 = 𝑄
෨𝐸

Δ𝐸
mean absolute 

deviation of energy

median energy

bunch charge

Sören Jalas et. al. “Bayesian Optimization of a Laser-Plasma Accelerator.”

PHYSICAL REVIEW LETTERS 126, 104801 (2021)

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.126.104801
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BO extensions

• Controller optimization for the optical synchronization system at the European XFEL

| ML Tutorial | Annika Eichler

e.g. safe BO

min (timing jitter)2

Controller

such that controller is decentralized, fixed order and 

stabilizing

laser is never out of lock

• Safe Bayesian optimization

• Black Box approach

• Safe during optimization

• Learns a probabilistic surrogate model
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Further BO Applications

• J. Kirschner et al., Tuning particle accelerators with safety constraints using Bayesian optimization, Phys. Rev. Accel. Beams 25 (2022). 

• Y. Gao et al., Bayesian optimization experiment for trajectory alignment at the low energy RHIC electron cooling system, Phys. Rev. Accel. Beams 25 (2022). 

• C. Xu et al, Optimization Studies of Simulated THz Radiation at FLUTE, Proc. 13th International Particle Accelerator Conference, Bangkok, Thailand (2022). 

• Ryan Roussel, Adi Hanuka, and Auralee Edelen, Multiobjective Bayesian optimization for online accelerator tuning, Phys. Rev. Accel. Beams 24 (2021).

• S. Jalas et al, Bayesian Optimization of a Laser-Plasma Accelerator, Phys. Rev. Let. 126 (2021). 

• R. Roussel et al, Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning, nature communications 12 (2021). 

• A. Edelen et al., Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems, Phys. Rev. Accel. Beams 23 

(2020). 

• R. J. Shalloo et al., Automation and control of laser wakefield accelerators using Bayesian optimization, nature communications 11 (2020). 

• J. Duris et al., Bayesian Optimization of a Free-Electron Laser, Phys. Rev. Lett. 124 (2020). 

• J. Kirschner et al., Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces, Proc. 36th International Conference on Machine 

Learning, Long Beach, USA (2019). 

• J. Kirschner et al., Bayesian Optimization for Fast and Safe Parameter Tuning of SwissFEL, Proc. 39th Free Electron Laser Conf. Hamburg, German, pp. 707–710 

(2019). 

• M. McIntire et al., Bayesian optimization of FEL performance at LCLS, Proc. 7th International Particle Accelerator Conference, Busan, Korea, pp. 2972–2975 

(2016). 

| ML Tutorial | Annika Eichler

For particle accelerators
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Reinforcement Learning for Beam Steering

The Task

Focus and position electron beam on 

a diagnostic screen using a 

quadrupole triplet and two correctors 

Actions

Continuous 5-dimensional action

defined as change to magnet settings

Observations

• Continuous 13-dimensional observations of magnet 

settings, desired beam parameters and measured beam parameters

• Partially observability of a more than 29-dimensional state space

Reward

Improvement of the objective 𝑂 𝑜𝑡 = lnσ𝑝∈𝑏𝑡,𝑝′∈𝑏𝑡′
𝑤𝑝 𝑝 − 𝑝′

| ML Tutorial | Annika Eichler

At ARES

Observed beam Desired beam

Jan Kaiser, Oliver Stein, Annika Eichler. “Learning-based Optimization of Particle 

Accelerators Under Partial Observability Without Real-World 

Training.” Proceedings of the 39th International Conference on Machine 
Learning, PMLR 162:10575-10585, 2022.

Courtesy: Jan Kaiser

https://proceedings.mlr.press/v162/kaiser22a.html
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Reinforcement Learning for Beam Steering

Reinforcement Learning setup

• TD3 algorithm used for training

• Agents are trained in simulation running 6 million 

steps 

• Simulation environment: Cheetah (Simple high-speed 

linear beam dynamics simulation written in Python

Sim2Real transfer

• Domain 

randomization

| ML Tutorial | Annika Eichler

Setup and results

O Stein, J Kaiser, A Eichler, I Agapov. “Accelerating linear beam dynamics simulations for machine learning 
applications.” Proceedings of the 13th International Particle Accelerator Conference, 2022

Courtesy: Jan Kaiser

https://inspirehep.net/files/942944a160eb6a1603336b7c6945bbe5
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Further RL Applications

• Learning-based optimization of particle accelerators under partial observability without real-world training -

Tuning of electron beam properties on a diagnostic screen using RL.

• Sample-efficient reinforcement learning for CERN accelerator control - Beam trajectory steering using RL 

with a focus on sample-efficient training.

• Autonomous control of a particle accelerator using deep reinforcement learning - Beam transport through a 

drift tube linac using RL.

• Basic reinforcement learning techniques to control the intensity of a seeded free-electron laser - RL-based 

laser alignment and drift recovery.

• Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster - Regulation of a 

gradient magnet power supply using RL and real-time implementation of the trained agent using field-

programmable gate arrays (FPGAs). 

• Magnetic control of tokamak plasmas through deep reinforcement learning - Landmark paper on RL for 

controlling a real-world physical system (plasma in a tokamak fusion reactor).

• …
| ML Tutorial | Annika Eichler

for particle accelerator

https://proceedings.mlr.press/v162/kaiser22a.html
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.124801
https://arxiv.org/abs/2010.08141
https://www.mdpi.com/2079-9292/9/5/781/htm
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://www.nature.com/articles/s41586-021-04301-9
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Tools

| ML Tutorial | Annika Eichler

What is out there

21 Essential Python Tools | DataCamp

Reinforcement Learning

Machine Learning

The Best Tools for Reinforcement Learning in Python You Actually Want to Try - neptune.ai

Data Visualization

https://www.datacamp.com/tutorial/21-essential-python-tools
https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
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Machine Learning Round Table

• Voting:

• Are you using machine learning? YES NO

• Are you planning to use machine learning? YES NO

• Where are limitations of current methods? Where do you see applications? Where we are not meeting the 

requirements?

• How do we need to plan the infrastructure to enable the usage of ML? What is the current status of the 

infrastructure?

• Where do you see limitations of ML methods?

• Do you see advantages given by LLRF community?

| ML Tutorial | Annika Eichler

Questions


