

Overview of Accelerators in Korea

October 23, 2023 Changbum Kim Pohang Accelerator Laboratory

Contents

- PLS-II
- PAL-XFEL
- 4GSR
- KOMAC
- RAON

PLS-II PAL-XFEL

KOMAC

PLS-II & PAL-XFEL

Pohang Accelerator Laboratory

History of Pohang Accelerator Laboratory

- 1986: Pohang Light Source (PLS) project firstly proposed by Dr. Hogil Kim (the 1st president of POSTECH)
- 1988: Foundation of PAL (Supported by Mr. Taejoon Park) and initiation of PLS construction
- 1994: Completion of PLS construction
- 1995: Starting of user service operation with 2 Beamlines
- 2009: Upgrade of PLS (PLS-II) was started
- 2011: Construction of Hard X-ray Free Electron Laser (PAL-XFEL) was started

Quantity of Beamline Experiments

Quality of Beamline Experiments

Impact Factor Average			
		12.4	
	7.7 7.1 6.5 6 5.8	10.3 9.1	
2.6 2.6 2.5 2.4 2.5 1.8 1.8 1.8 1.8 1.9 1.00 /01		20 '21 '22	

Journal	Impact Factor
Nature	69.5
Nature Energy	67.4
Cell	66.9
Science	63.7
Nature Materials	47.7
Joule	46.0
Nature Nanotechnology	40.5
Nature Photonics	39.7
Energy & Environment Science	39.7
Advanced Materials	32.1
Applied Catalysis B – Environmental	24.3
Nature Physics	19.7
Nature Communications	17.7
Science Advances	15.0
Nano Letters	12.3

* Average of SCIE journal Impact Factors for national R&D projects : 3.9

Parameters of PLS-II

Parameter	Value
Circumference	281.82 m
Super-period	12
Energy	3 GeV
Beam current	250 ~ 400 mA
Emittance	5.8 nmrad
Emittance coupling	< 1 %
Energy spread	0.1 %
Momentum compaction	0.0013
Bunch length	16 ps
Tune (H/V)	15.375 / 9.145
Chromaticity (H/V)	3/3

36 Beamlines of PLS-II

Operation Requirements

- ✤ User Service of 190 days
- ✤ Beam Availability > 97%
 - Maintenance of linac and storage ring
- ✤ 3 GeV Top-Up Operation
 - Stable operation of linac klystrons
- * 250 ~ 400 mA Beam Current
 - Stable operation of three cryomodules

- ***** Electron Beam Stability < 1 μm rms
 - Operation of slow orbit feedback
- Photon Beam Stability < 2 μm rms</p>
- Operation of photon position feedback by using PBPM
- Electron Beam Stability during ID gap
 change < 6 μm rms
 - Operation of fast orbit feedback
- ***** Single Bunch Current in Hybrid Mode: 5 mA
 - Operation of transverse feedback system

Measures for Beam Stability of PLS-II

Operation Result

***** Operation Parameter

- Beam current: 250 mA
- Top-up mode injection
- Injection period: 3 minutes
- Horizontal beam size: 90 μm
- Vertical beam size: 25 μm
- Vertical fractional tune: 0.375
- Vertical fractional tune: 0.145

10 days operation result (2023. 4. 26 ~ 2023. 5. 4)

Fill Pattern & Hybrid Mode

***** Various fill pattern

- Harmonic number: 470
- 400, 430, 430+1, 350+1, 340+3, 60x5, etc.

* 300 + 1 hybrid mode

- 1st Transverse Feedback for equally filled bunches (up to 3mA)
- 2nd TFS for unequal bunch (5mA serviced in 2021)

Beam Availability & Machine Faults (January 1, 2023 ~ August 1, 2023)

Stability

- Beam availability: 99.4% (3245.2 hr / 3264 hr)
- Mean time between faults: 120 hr
- Mean time trouble repair: 0.74 hr

2023 Fault Time: 19.07 hr

Supper-conducting RF Cavity

Cryogenic System & Major Faults

16

- 1. LN2 leak (2014/2/19~3/22)
- 2. Turbine trouble
 - (2017/2/14~5/4)
- 3. Coldbox controller trouble by earthquake

(2017/11/19~12/12)

- 4. Compressor control rack pan mal-function (2019/9/12~9/25)
- 5. Cavity #3 leak
 - (2019/9/26~10/22)
- 6. Coldbox valve mal-function in 2020
- 7. Cryogenic emergency interlock by blackout in 2020
- 8. Cavity #1 leak (2022/8/22)

PAL-XFEL Layout & Parameters

Main parameters

11 GeV 20-200 pC < 0.4 mm mrad 60 Hz 5 fs – 50 fs 3 kA Kicker Magnet

Undulator Line	НХ	SX
Photon energy [keV]	2.0 ~ 15.0	0.25 ~ 1.25
Beam Energy [GeV]	4 ~ 11	3.0
Wavelength Tuning	Energy	Gap
Undulator Type	Planar	Planar
Undulator Period / Gap [mm]	26 / 8.3	35 / 9.0

Operation History of PAL-XFEL

FEL Stability (12 hours, October 19, 2022)

19

Highest FEL Pulse Energy

- *E*_{beam}: 7.325 GeV
- *E*_{photon}: 7.13 keV SASE FEL
- Norm. emittance at injector:

0.35 mm (hor) / 0.31 mm (ver)

- Norm. emittance at Undulator:
 0.35 mm (hor) / 0.31 mm (ver)
- Peak current: 2.8 kA
- Used undulator number: 19
- XFEL pulse duration: 36.0 fs (FWHM)

SASE FEL vs Self-Seeding FEL

SASE FEL at 6.99 keV

Self-Seeding FEL at 6.99 keV

22

Self-Seeding FEL

• Self-Seeding was installed under collaboration with APS, LCLS and TISNCM (Russia) in 2018

Progress in Self-seeding FEL

- Photon Energy Ec = 9.7 keV
- SASE FEL Energy: 2 mJ
- SASE FEL bandwidth (FWHM) = 27 eV
- Averaged Self-seeding FEL energy: ~850 μJ (~1.5 mJ for single shot)
- Measured bandwidth = 0.35 eV (Resolution = 0.26 eV)
- De-convoluted bandwidth (FWHM) = 0.22 eV
- FEL Pulse duration = ~ 20 fs

• Peak brightness (photons/s/ mm² /mrad²/0.1% BW): 5 x 10³⁵

Peak Brightness and Spectral Flux

• For self-seeded FEL, almost one order of magnitude enhancements of the peak brightness and spectral flux were obtained compared to that of the SASE mode

I. Nam et al., Nature Photonics (2021)

Energy Scan for Self-Seeding FEL

26

LLRF System for PAL-XFEL

Poster ID: 43, Jinyul Hu, New development of X-band LLRF for PAL-XFEL Linearizer

Status of 4GSR

4GSR Outline

- Multipurpose Synchrotron Radiation Construction Project
- Period: 2021 July to 2027 June (6yrs)
- Budget: 1.0454 Trillion KRW (≈ USD 750M)
- Land: 540,000 m / Building: 69,400 m
- Location: Ochang, Chungcheongbuk-do

Specifications

- Beam Energy: 4 GeV
- Beam Emittance: less than 100 pm·rad (CDR: 58 pm·rad)
- Circumference: 800m
- Beamlines : more than 40
- Accelerator: Gun, Injector LINAC, 4 GeV Booster
- Lattice: MBA-7 Bend Achromat

Project Timeline

Design features of Korean 4GSR

- ***** High photon beam performance from storage ring.
 - The best performance in the range of 10 ~ 30 keV.
 - Capability to generate photon beam up to 100 keV.
- ***** Considering well demonstrated technologies for the design.
 - Off axis injection with conventional injection scheme
 - General technologies for magnet and vacuum systems.
 - On schedule user service and full performance.
- **♦** Synergy with PLS-II and PAL-XFEL.
 - Supporting full range of synchrotron radiation application.

Lattice Design of Storage Ring

- The storage ring is a 800 m, 4 GeV, 28-cell ring with natural emittance of 62 pm
- * The unit cell is a H7BA with 2 T center bend
- It exploits longitudinal gradient bends (LGBMs) and reverse bends (RBs) to suppress emittance

Parameters	Value
Energy (GeV)	4
Circumference (m)	799.297
Emittance (pm)	62
Tunes (H,V)	68.10, 23.18
Natural chromaticity (H,V)	-109.6, -84.7
Chromaticity (corrected) (H,V)	4.5 , 3.5
Hor. Damping partition	1.84
Momentum compaction	$0.78 imes 10^{-4}$
Energy spread (σ_{δ})	$1.26 imes 10^{-3}$
Energy loss per turn (MeV)	1.097
Beam current (mA)	400
Bunch length (σ_z) (mm)	4.058 / 16.232
# of Beamline	25 (ID) 28 (2 T Bend)

Injection system

- ✤ Photocathod Gun & 200 MeV Linac
- ✤ Booster Ring : 2 Hz, 773 m, FODO
- ✤ Injection & Extraction

Value	Unit	TOR
772.893	m	
0.2 - 4	GeV	
7717	pm rad	
19	pm rad	
0.000925		
19.195	-	
14.19	-	
-27.7	-	
-19.3	-	
1671.3	keV	
0.107	%	
8.4	ms	
12.3	ms	
8.1	ms	
4217	Hz	
0.01087		
11.17	mm	!구원 TITUTE
	Value 772.893 0.2 - 4 7717 19 19 19.000925 19.195 14.19 -27.7 1671.3 1671.3 1671.3 12.3 4217 0.01087 11.17	ValueUnit772.893m0.2 - 4GeV7717pm rad19pm rad19-19.195-14.1927.7-1671.3KeV1671.3%12.3ms12.3ms4217Hz0.01087Hz11.17mm

Construction Site

Yong-Seok Lee, Progress in LLRF system development for Korea-4GSR

Status of KOMAC

38

Korea Multi-purpose Accelerator Complex

- One of branches of Korea Atomic Energy Research Institute (Gyeongju)
- Operation since 2013

100 MeV Linac and Beamline

- Linac commissioning in 2013
- General purpose beamline and user service starts (2013~)
- RI production beamline (2016~)
- Low flux beamline (2017~)
- Accelerator test beamline (2017~)
- Prototype RI beam production beamline (2018~)
- Pilot operation of neutron beam service (2018~)
- Total 4 proton beamlines are under user service at 2023

100 MeV Linac and Beamline

Features of KOMAC 100MeV linac

- 50-keV Injector (Ion source + LEBT)
- 3-MeV RFQ (4-vane type)
- 20 & 100-MeV DTL
- RF Frequency : 350 MHz
- Beam Extractions at 20 or 100 MeV
- 6 Beamlines for 20 MeV & 100 MeV

Output Energy (MeV)	20	100
Max. Peak Beam Current (mA)	1 ~ 20	1 ~ 20
Max. Beam Duty (%)	24	8
Avg. Beam Current (mA)	0.1 ~ 4.8	0.1 ~ 1.6
Pulse Length (ms)	0.1 ~ 2	0.1 ~ 1.33
Max. Repetition Rate (Hz)	120	60
Max. Avg. Beam Power (kW)	96	160

100 MeV Beamline Target Rooms

20MeV TR(TR23)

• Application : Proton beam irradiation for general purpose (material / nano-science, semiconductor etc.)

- Proton beam
 - Energy: 20 MeV / 33 ~ 100 MeV
- Beam power: 10 kW @ 100 MeV
- Status : in user service (2013~)

● 100MeV TR(TR101)

- Application : RI production: Cu-67, Sr-82, etc.
- Proton beam

100MeV TR(TR103)

- Energy: 33 ~ 100 MeV
- Beam power: 30 kW @ 100MeV
- Status
 - Installation: Dec. 2015
 - Started operation (2016~)

• 100MeV TR(TR102)

- Application : Space radiation, Detector R&D, etc.
- Proton beam
 - Avg. Current : max. 10 nA
 - Uniformity: < 10%, 100 mm X 100 mm</p>
 - Flux: 1x10⁵ ~ 1x10⁸/cm² / pulse
- Status : in user service (2017~)

100 MeV Linac Operation Statistics

100 MeV Linac User Statistics

Period: 2022.02.28. ~ 2022.12.30. (133 days / 28 weeks)

Number of project: 95

20 MeV – 6 projects, 100 MeV – 89 projects

100 MeV Linac RF System Layout

- o 12 tanks, 9 klystrons, 4 modulators
- 20 MeV DTL : 4 DTL tanks / klystron
- 100 MeV DTL : 1 DTL tanks / klystron
- o 2~3 klystrons / Modulator
- Resonant frequency control: Cooling water temperature by using RCCS (Resonant frequency control cooling system)

High Power RF System

	Specifications	
Maker	THALES	Canon
Model	TH2089K	E37621
Frequency [MHz]	350	350
Peak RF output [MW]	1.6	1.6
Efficiency [%]	58	61
Gain [dB]	43	46.5
Pulse length [us]	1,500	1,500
Repetition rate [Hz]	60	60
Beam voltage [kV]	107	105
Anode voltage [kV]	54	88
Beam current [A]	26	25.9
Weight [kg]	2,500	2,790
Length [m]	4.9	5.3

- Two types of klystrons are used
 - TH2089K is modified version from CERN klystron
 - E37625 is modified version from J-PARC klystron
- Filament operation time > 60,000 hrs

THALES (TH2089K) klystron

Canon (E37625) klystron

Klystron Modulator

OIL PUMP

SYSTEM (155Y502307DC)

WATER COOLING

SYSTEM (155Y502150DC)

ASSEMBLY

DIODE RECTIFIE ASSEMBLY

Features of KOMAC Modulator

- Peak Voltage : -105 kV ٠
- Peak Current: 53 A ٠
- Pulse width : 1.5 ms ٠
- Repetition rate : 60 Hz ٠
- Duty cycle : 9% (1.5 ms, 60 Hz) ٠
- Peak Power: 5.6 MW ٠
- Average Power : 504 kW .

Low Level RF System

Features of KOMAC LLRF

- FPGA : Xilinx Virtex-4
- ADC : LTC2255, 14 bit, 125 M/s max.
- DAC : DAC5686, 16 bit
- Manufacturer : Pentek (U.S.)
- Model : 7142-428
- IF Frequency : 50 MHz

VME 5100 board

PENTEK 7142

- Lo Frequency : 300 MHz
- Sampling rate : 40 MHz (IQ sampling)

PCI communication

PCI interface

User FPGA

VIRTEX-4

4XC4VSX55

ADC 1 ADC 2 14bits 14bits TC2255 TC2255

Xilinx

CPU 7410

14bits

50 MHz

Pickup from 350MHz cavity

300 MHz LO reference

Timing system

Trigger

Clock

40 MHz clock Multiplier x4

Divider /30

Oscilloscope

350 MHz

350 MHz BPF

Diode

Detecto

Low Level RF System

• Iterative learning feed forward control was implemented to compensate beam loading effect

- Feed-forward controller working parallel with feedback controller
- Feed-forward table is updated based on the error iteratively

Poster ID : 102, Haeseong Jeong, et al., Development status of LLRF system for KOMAC

Status of RAON

Rare isotope Accelerator complex for ON-line expreiements (RAON)

Isotope Separation On-Line (ISOL)

Acceleration of light atomic ions for collisions with heavy atomic targets Production of large amounts of rare isotopes

In-flight Fragmentation (IF)

Acceleration of heavy atomic ions for collisions with light atomic targets

Production of various rare isotopes

nstitute for Basic Science

ISOL + IF

RAON will be the first kind of facility having ISOL and IF method combined After producing rare isotopes with ISOL, RAON again accelerates them with IF

Rare Isotope Beam (RIB)

Institute for Basic Science

Driver Accelerator	SCL3 (ECR/ISOL)	SCL3 + SCL2	Cyclotron
Primary Beam Energy	80 MeV (p), 18 MeV/u (U)	600 MeV (p), 200 MeV/u (U)	< 70 MeV (p)
Experiment Facility	Kobra, NDPS	In-flight Fragment Muon facility	ISOL

Accelerator Systems (Test Facility & Cavity Tests)

- SRF Test Facility: 3 Vertical Test Pits (3 cavities per pit), 3 Horizontal Test Bunkers
- Test all the RAON Cavities: 22 QWR (82.25 MHz), 102 HWR (162.5 MHz) and SSR1,2 (325 MHz)

Accelerator Systems (Low Energy Linac: SCL3)

Beam commissioning started in Oct, 2022

- Cryomodule(CM) & Warm section is assembled in the clean booth at tunnel
- Total Particle counts < 30 counts / 10 min (size > 0.5 um)

nstitute for Basic Science

SCL3 cryoplant (4.2 kW @ 4.5 K)
 SCL3 cryoplant (4.2 kW @ 4.5 K)

Compressors and Oil Removal System (WCS)

SCL2 cryoplant (13.5 kW @ 4.5 K)

Compressors and Oil Removal System (WCS)

Cold Box(CB)

Cold Box (CB) ft warm side, right – cold sid

57

57

HPRF SSPA System

	Cavity	Quantity (EA)	Frequency (MHz)	RF Power (kW)	RF Transmission Line
	SSR1	69	325	8	3 1/8 inch EIA
SCL2	SSR2	144	325	20	4 1/16 inch EIA
SCL3	RFQ (NC)	1	81.25	160 (80*2)	6 1/8 inch EIA
	MEBT (NC)	4	81.25	20,15,4*2	3 1/8 inch EIA
	QWR	22	81.25	4	1 5/8 inch EIA
	HWR	102	162.5	4	1 5/8 inch EIA
P2DT & CSS	HWR	4 +2	162.5	4	1 5/8 inch EIA

High Power RF System

□ System characteristics (Solid State Power Amplifier, SSPA)

Parameters	Unit	Value	Remark
Frequency range (QWR/HWR)	MHz	QWR: 81.25 ± 1 HWR: 162.5 ± 1	1dB compression
Power (CW and pulse)	kW	4 kW @ 0 dBm input	with any VSWR
I/O impedance	ohm	50	
Gain linearity	dB	< 6 (-20dB range) < 3 (-10dB range)	within specified range from m ax
Input return loss	dB	< -20	
Stability - Phase	degree	1	water temp. 25±1 °C
Stability - Power	%	1	water temp. 25±1 °C

HPRF & LLRF in Galley

□ Status

• Installation of all 22 QWR, 106 HWR SSPAs

59

- Test of each unit was finished
- Supported SCL beam commissioning

Low Level RF System

□ Characteristics

Digital LLRF based on FPGA Each cavity owns its LLRF, one by one Integrated SRF control & operation system including OPI with EPICS (RF feedback, interlock, protection, quench detection, monitoring, DAQ) Pulse conditioning system for coupler and cavity

LLRF I/O Interface

Specification	
Item	Spec
RF Input	4
RF Output	1
RF ADC	AD9653(16 bit, 4 ch, serial)
SoC	Xilinx Zynq Ultrascale ZU9EG
EPICS IOC	In Arm core of Zynq
Clock Gen	LMK04828 PLL

이 기초과학연구원 Poster ID: 62, Hyojae Jang et. al., Operation of a LLRF system for RAON low energy LINAC RIST

Beam Commissioning (Injector)

- Beam parameter measurements (Allison scanners, wirescanners)
 - measuring initial beam parameters (beam sizes)
 - controlling beam optics
- Emittance measurement (Allison scanner, quad scan)

Beam Commissioning (Low Energy Linac: SCL3)

- Beam commissioning of the 1st superconducting linac in Korea.
- SCL3 commissioning was done in May 2023, achieving 17.4 MeV/u (⁴⁰Ar⁹⁺).

62

62

• Achieved beam transmission was 64%.

nstitute for Basic Science

High Energy Superconducting Linac (SCL2 R&D Project)

- ✤ SCL2 R&D Project : 2022. 12. 01. 2025. 12. 31.
- ✤ Budget : ~\$10 M USD (₩12,592 M KRW)
- ✤ Goal : Prototyping, preproduction and SRF Test Facility upgrade

63

Preproduction/standardization

- 1 set of SSR1, 2 cryomodule
- Vertical / Horizontal Test
- Preproduction verification

Construction/commissioning

- SSR1 (23 sets), SSR2 (25 sets)
- Mass production
- Horizontal Test
- Installation / commissioning

63

Thanks to:

All members in PLS-II, PAL-XFEL, KOMAC and RAON

