

Unleashing the Full Potential of LLRF Algorithms:

Enhancing Stability, Reliability, and Accuracy in RF Systems

—— IQ Award Presentation (LLRF2023)

Feng Qiu, on behalf of LLRF grp of KEK & IMP

Institute of Modern Physics (IMP), Chinese Academy of Science

OZTEZTS

Self-Introduction

 $\square \overline{2}$

03

Research Activities

Sum. & Acknowledgment

Self Introduction

• F. Qiu, Senior Staff Scientist, 1985/07/05, Affiliation: Institute of Modern Physics (IMP), China PhD degree @ IHEP (Beijing), Assistant Prof. @ KEK (previous affiliation)

Self Introduction (cont'd)

• Main project involved: cERL and STF @ KEK; CiADS (& its prototype facility: CAFe) @ IMP

LRF2023 LLRF2023 LLRF2023

• Advanced **LLRF** algorithms are crucial for improving the beam quality

LRF2023 LLRF2023 LLRF2023

• Advanced **LLRF** algorithms are crucial for improving the beam quality

Self-Introduction

 $\Pi 2$

Research Activities

- Disturbance Observer-based Ctrl.
- Modified Iterative Learning Ctrl.
- Burst-noise Mitigation
- Channel Crosstalk Calibration

Pulse Mode Operation @ cERL

- Operated cERL in **pulse mode** to increase the beam energy (for isotope production)
- Encountered **poor pulse-to-pulse** stability under **PI ctrI** (Intra-pulse stability looks good)
- Observed fluctuations in the measured beam energy

F. Qiu*, et al., Application of disturbance observer-based control on pulsed superconducting radio frequency cavities Phy. Rev. Accel Beam 21, 032003 (2018)

Disturbance Observer-based (DOB) Control

• Disturbance Observer (DOB) ctrl.: Reconstruct **disturbance estimation** (\hat{d}) , then cancel d with \hat{d} from the LLRF control loop

DOB Control (cont'd)

• High RF stabilities and beam energy stability have been achieved

RF stabilities (Pulse-to-pulse)

RF stabilities (intra-pulse)

F. Qiu*, et al., Application of disturbance observer-based control on pulsed superconducting radio frequency cavities Phy. Rev. Accel Beam 21, 032003 (2021)

F. Qiu*, et al., Combined disturbance-observer-based control and iterative learning control design for pulsed superconducting radio frequency cavities, Nucl. Sci. Tech. 32:56 (2021)

EXEK

Self-Introduction

 \square

Research Activities

- Disturbance Observer-based Ctrl.
- Modified Iterative Learning Ctrl.
- Burst-noise Mitigation
- Channel Crosstalk Calibration

Transient Loading of 10 mA Beam @ CAFe

- $CAFe \rightarrow Stable operation of 10 mA proton beam$
 - In March 2021, CAFe achieved stable operation at hundreds of kW for 100 hours, confirming the feasibility 10 mA beam operation. The average beam current set **new world records** for proton linear SRF accelerators

CERN-COURIER evaluates this achievement as an outstanding accomplishment and a milestone breakthrough in the field of ADS

OW LEVEL RADIO FREQUENCY WORKSHOP Iterative Learning Control (ILC) RESU53

Iterative

Learning

Control

(9.56)

- **Iterative Learning Control** (ILC) \rightarrow widely used for beam-loading compensation
 - Calibrate the error between the reference signal (r) and cavity pick-up signal (y) Step1:

 $e_i(k) = r_i(k) - y_i(k)$

Update the current feedforward (FF) output (u_{j+1}) using the previous FF (u_j) and error (e_j) A matrix or a zero-phase filter Step2: ۲

 $u_{j+1}(k) = \mathbf{Q}_{\mathsf{ILC}}[u_j + \mathbf{L}(e_j)]$

The main ILC algorithm is usually implemented outside FPGA

FPGA-based ILC (Basic Idea)

- IMP
- In most cases, a beam pulse can be considered **quasi-rectangular**, which means the FF could also be rectangular pulse. This assumption may significantly simplify the update law

FPGA-based ILC (Confirmation)

- The new ILC algorithm was demonstrated during the CAFe beam-commissioning
 - High rep. rate: works in 1 kHz ~ 1 MH; High bandwidth (NO Q-filter)

C. Xu, Z. Zhu, F. Qiu* et al., Application of a modified iterative learning control algorithm for superconducting radio-frequency cavities, Nucl. Instrum. Methods. A . 955,166237 (2022)

Self-Introduction

 $\square 2$

Research Activities

- Disturbance Observer-based Ctrl.
- Modified Iterative Learning Ctrl.
- Burst-noise Mitigation
- Crosstalk Cali. & $\varphi_{\rm b}$ Cali.

Burst-noise and its implication

- Two types of burst noise signals induced by field emission
 - Flashover & (Partial) E-quench

- **Flashover**: Discharge at pick-up antenna, the actual field remains unchanged
- (Partial) E-quench: Discharge at cavity inner conductor, the actual field rapidly decreases

The burst noise can lead to **an unexpected LLRF response,** eventually causing a cavity fault

Burst-noise Processing Algorithm (Basic Idea)

- IMP
- When the LLRF system detects the burst-noise events, a burst-noise trigger is immediately emitted and is held for a time interval of ΔT (>15 µs)
- The PI output (u_{PI}) is **overwritten by** u_{delay} which retains the data from u_{PI} **0.8 µS prior** to burst-noise trigger; then the u_{PI} is maintained until the trigger is over

*u*_{delay} is the reasonable PI output

Burst-noise Processing Algorithm (Results)

- The unexpected LLRF response can be eliminated
- The effectiveness of the proposed algorithm was confirmed during the long-term operation

F. Qiu, IQ Award Presentation, LLRF2023, Oct. 22~27, 2023, in Gyeongju, Korea

Dark-current Characteristic

- IMP
- The "partial E-quench" is accompanied by **dark-current** which can be seen as a kind of beamloading. It is possible to characterize the dark current using the **"beam induced RF transient"**

F. Qiu* et al., In-situ mitigation strategies of field emission induced cavity fault using low-level radio-frequency system, Nucl. Sci. Tech. 33:140, 2022

Self-Introduction

17

Research Activities

- Disturbance Observer-based Ctrl.
- Modified Iterative Learning Ctrl.
- Burst-noise Mitigation
- Channel Crosstalk Calibration

Issues impacting RF Signal Measurements

- Measurement accuracy of RF signals is mainly affected by two factors:
 - Crosstalk between the meas. channels (e.g., dir. coupler)
 - Impedance mismatch of high-power RF components (RF source or Circulator) → See J. Y. Ma's Poster (ID: 09)

The coefficients a b c d can be calibrated using the cav. diff. equation under pulse mode op.^[2]

Real part [norm. units]

[1] J. Y. Ma, ...F. Qiu* et al., Measurement of the cavity-loaded quality factor in superconducting radio-frequency systems with mismatched source impedance, Nucl. Sci. Tech. 33:123, 2023 [2] A. Brandt, PhD thesis, Universitt Hamburg, 2007

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

Novel Signal Calibration Algorithm

• We proposed a novel signal calibration algorithm more suitable for CW mode machine

F. Qiu, IQ Award Presentation, LLRF2023, Oct. 22~27, 2023, in Gyeongju, Korea

Novel Signal Calibration Algorithm (Results) IMP. RF2023

The proposed algorithm was confirmed at CAFe

J. Y. Ma, F. Qiu* et al., Precise calibration of cavity forward and reflected signal using low-level radio-frequency system, Nucl. Sci. Tech. 33:4, 2022

F. Qiu* et al., Approach to calibrate actual cavity forward and reflected signals for continuous wave-operated cavities, Nucl. Instrum. Methods. A . 955,166237 (2022)

OW LEVEL RADIO FREQUENCY WORKSHOP

Beam Phase Calibration (application)

IMP

 Within the calibrated optimal coefficients, it is possible to accurately calculate the RF vectors, as well as the beam phase

BPM Meas.	Beam Phase using RF	
	With cali.	W/o cali.
$\left(I_{\mathrm{b}}, arphi_{\mathrm{b}} ight)$	$V_{\rm f, cail1} = aV_f^* + bV_r^*$	$V_{\rm f, cail2} = XV_f^*$
	$ig(I_{ ext{b, cail1}}$, $arphi_{ ext{b, cail}}ig)$	$ig(I_{ ext{b, cail1}}$, $arphi_{ ext{b, cail 2}}ig)$
(8.3 mA, -34°) (5.6 mA, -34°) (3 mA, -34°)	(8.2 mA, -33°) (5.6 mA, -33°) (2.9 mA, -36°)	(6.3 mA, -36°) (4.3 mA, -36°) (2.2 mA, -39°)

Cross-talk was considered

Real part [norm. units]

NONTENTS

 \square

03

Self-Introduction

Research Activities

Sum. & Acknowledgment

- Innovatively applying DOB control in the LLRF community, achieving precise beam energy spread control with remarkable results at cERL
- Leveraging prior knowledge of the beam profile to develop a FPGA-based real-time ILC control, successfully suppressing RF transient instabilities caused by the10 mA CW proton beam at CAFe
- Developing a real-time digital filter with robustness to FE-induced burst noise, resolving RF instability and improving machine reliability of CAFe
- Proposing a novel cross-talk calibration algorithm for SRF cavities operated in CW mode

Acknowledgments

- I would like to express my gratitude to LLRF **SPC & LOC** for this incredible honor. I would also like to thank the members of the **Selection Committee** for their diligence and hard work in choosing me for this award. Special thanks to generous **Dimtel Inc.** for their invaluable support
- I want to acknowledge the unwavering support of RF group and Beam-commissioning team in KEK and IMP
 - **KEK: S. Michizono** (**Supervisor, Division Head**), T. Matsumoto, T. Miura, K. Furukawa, Z. Fang, H. Sakai, M. Omet, D. Arakawa, S. Matsumoto, E. Kako, K. Umemori, H. Katagiri, S. Fukuda, T. Furuya, T. Miyajima, T. Obina...
 - **IMP: Y. He** (**Division Head**), Z. J. Wang, G. R. Huang, L. P. Sun, Z. Gao, T. C. Jiang, Z. L. Zhu, Q. Chen, L. B. Xu, Z. H. Xue, J. Y. Ma, L. J. Yang, C. Y. Xu, Z. L. Zhang, T. Tan, M. X. Xu, Z. Q. Yang, A. D. Wu, C. Y. J. Wong, D. D. Luo...
- I owe a debt of gratitude to my family, colleagues, and friends
- Finally, thanks again for this incredible honor. I am deeply moved and inspired to continue my work with renewed passion and dedication

Thanks for your attention감사합니다

F. Qiu, IQ Award Presentation, LLRF2023, Oct. 22~27, 2023, in Gyeongju, Korea

Back-up Slides

F. Qiu, IQ Award Presentation, LLRF2023, Oct. 22~27, 2023, in Gyeongju, Korea

SRF faults at **CAFe**

SRF faults account for most beam trips (Eu-XFEL/CEBAF/ELBE/CAFe)

Problem: Minimize cavity faults to enhance beam availability, reliability, and stability **Solution:** Gain a deep understanding of the unstable mechanisms behind cavity faults

SRF faults contribute to the dominant beam trips

LOW LEVEL RADIO FREQUENCY WORKSHOP 2023

SRF faults at CAFe (cont'd)

Digtial low-level RF

- Capture fault waveform
- Analyze fault patterns & mechanisms

Features of the DAQ:

- 10 kHz ~ 100 kHz rates
- 0.5 s ~ 5 s waveforms
- 8 ADC channels

F. Qiu, IQ Award Presentation, LLRF2023, Oct. 22~27, 2023, in Gyeongju, Korea

ML-based SRF faults Classification

F. Qiu, IQ Award Presentation, LLRF2023, Oct. 22~27, 2023, in Gyeongju, Korea

Cluster (n=10)

ML-based SRF faults Classification (cont'd) RESU53

Feature importance analysis: Which features have the greatest impact on the results?

Precision: Roughly > **90**% (compared with expert predictions), seems promising

PCA analysis: Which patterns are prone to confusion?

Precision Matrix

Beam Phase Calibration

Waveform Plots

- The cavity forward power would be different in the case of with and w/o beam
- Characterize the beam vectors V_b using V_f signal with beam (U_{wb}) and w/o beam (U_{nb})

Vector Plots (in steady-state)

LOW LEVEL RADIO FREQUENCY WORKSHOP 2029

Beam Phase Calibration (@ IMP-CAFe)

