LLRF upgrade status at the KEK Photon Factory 2.5 GeV ring

LLRF2023@Gyeongju, Korea Oct. 24th, 2023 KEK PF RF groupe Daichi Naito, N. Yamamoto, T. Takahashi, A. Motomura, S. Sakanaka

Contents

- Introduction
 - Photon factory (PF).
 - PF 2.5 GeV ring RF system.
- Schematic of the new LLRF system.
- Feature of the new LLRF system.
- Performance tests of the new LLRF system
- Summary

Photon factory

- Photon Factory : Synchrotron light source facility in the KEK.
 -PF Advanced Ring (PF AR) : Single bunch operation (5 or 6.5 GeV, 50 mA).
 -PF 2.5 GeV ring (PF) : multi bunch mode or hybrid mode.
 <=We are replacing its LLRF (today's topic).
- We are considering future light source instead of AR and PF.
 - We are preparing short CDR.

RF system of the PF

<RF parameter>

Parameter	Value	
# of cavity	4	
# of klystron	4	
RF	500.1 MHz	
Total cavity voltage	1.7 MV	
Total klystron power	287 kW	

Cavities in the ring> Covities in t

The original LLRF was designed 40 years ago, there are some difficulties to get modules.
By replacing the analog LLRF to digital LLRF,

-improve the maintainability.

-develop technologies for the next generation light source.

Our target : Amplitude stability of the cavity voltage < ± 0.1 % Phase stability of the cavity voltage < ± 0.1 °

TBL compensation for the future light sources

- When the beam energy is middle (~3 GeV), intrabeam scattering causes the emittance growth and shortening of the Touschek lifetime.
 - => Bunch lengthening using fundamental and harmonic cavities.

<Proposing system [2]>

- Detect the phase of the bunch.
- Correct the transient beam loading voltage by wide-band compensation kicker.
- The new LLRF system incorporates advanced technology such as bunch-phase detection and TBL compensation.
 - [2] N. Yamamoto, *et al.*, PRAB **21**, 012001 (2018)
- [3] T. Yamaguchi, et al., NIM A **1053**, 168362 (2023)
- [4] D. Naito, et al., Proc IPAC23, WEPA119 (2023)

New LLRF system

Customizing LLRF technologies developed for the SPring-8, J-PARC and SuperKEKB => Minimizing development costs, periods, and risks.

Feature of the new LLRF

<Schematic of the RF control>

Feature of the new LLRF

1. Non-IQ direct sampling

- 2. Phase detection in bunch train
- 3. Amplitude & phase FB
- 4. AM/FM modulator

Feature of the new LLRF

<Schematic of the RF control>

Non-IQ direct sampling and phase detection

- Adapt non-IQ direct sampling for the RF detection at the ADC.
- Set the sampling clock of the ADC to be 307.75 MHz ($f_{RF} \times 8 \div 13$)
 - -RF detection is synchronized with the revolution clock.
 - =>Realize the fast calculation of the bunch phase shift in the LLRF system.
 - -Generate feedforward pattern and correct the phase shift in fundamental cavity (future plan).

Amplitude and phase control with double loop FB

• Using cavity input signal, correct the ripple from the klystron power supply (< 10 kHz).

- Using cavity pickup signal, correct the variation induced by beam loading(\sim several Hz).
- The cavity pickup FB output is used as the reference of the cavity input FB (double loop).
- IQ signals are converted to amplitude and phase for the feedback.

Amplitude and phase control with double loop FB

<RF phase at 0mA>

<RF phase at 450 mA>

- ψ changes from 0 to 65° (0 mA to 450 mA).
 - The IQ phase also rotates viewed from the generator voltage.
 - The IQ feedback control becomes unstable without phase correction.
 - => Using amplitude and phase control.
 - Advantage : not affected by the phase rotation.
 - Disadvantage : increase of the latency.

Feature of the new LLRF -Amplitude and phase CTL.-

<IQ phase at 0 mA>

<IQ phase at 450 mA>

- ψ changes from 0 to 65° (0 mA to 450 mA).
 - The IQ phase also rotates viewed from the generator voltage.
 - The IQ feedback control becomes unstable without phase correction.
 - => Using amplitude and phase control.
 - Advantage : not affected by the phase rotation.
 - Disadvantage : increase of the latency.

Status of the installation

- Product whole system in 2022.
- All components are installed.
- Performance check of all RF stations were almost completed.
- Currently, under commissioning to establish the control parameters and procedures for the user operation.
- We need to finish the commissioning until Nov. 7th!
- Highlights of the performance check
- Comparison of the stability between analog and digital LLRF.
- Delay measurement.
- Feedback parameter sweep.
- Stability check.

<Photo of the new LLRF>

Performance evaluation (1): stability of klystron output

- Control the klystron output only (single loop control).
- Klystron power was set to be 20 kW (1/4 of that at the user operation).
- With the analog LLRF, the feedback amplified some noise.
- The feedback with the digital LLRF was controlled better than that with the analog LLRF.

Performance evaluation (2): Delay time measurement

<Experimental setup>

- Output impulse from the digital LLRF out.
- Measure the waveform at individual process stage in LLRF.

<Definition of the measurement points>

- IQ conversion (data transfer from ADC to FPGA) and A/φ conversion (codec calculation) have large delay in the digital LLRF.
- Total delay is ~ 3 μ s => It is acceptable for our situation.

Performance evaluation (2): Delay time measurement

- IQ conversion (data transfer from ADC to FPGA) and A/φ conversion (codec calculation) have large delay in the digital LLRF.
- Total delay is ~ 3 μ s => It is acceptable for our situation.

Performance evaluation (3): test of double feedbacks

<Experimental setup>

<Stability of cavity voltage amplitude>

Unstability (degree) $\times 10^3$ gain 600 Γ 500 400 300 200 100 0 0.03 2 3 9 0 4 5 8 10 6 P gain

- After fine scan of low gain region, we set the PI parameters to be $(K_p, K_I) = (2, 7.3e3)$.
 - Amplitude stability @ $(2, 7.3e3) : \pm 0.015 \%$
 - Phase stability @ (2, 7.3e3) : ± 0.038 °
 - => Achieve our goal (< ± 0.1 %, < ± 0.1 °)

<Stability of cavity voltage phase>

Performance evaluation (4): stability tests

- Set parameters used for the beam operation
- Evaluate the stability of cavity pickup signal (cavity voltage).
- Measure master RF signal to check ADC stability.
- Amplitude and phase were recorded by every 10 minutes.
- Temperature in the shelf was 25.5±0.1 °C.

<Amplitude stability>

<Phase stability>

- Achieved amplitude stability of $\pm 0.011\%$, phase stability of $\pm 0.044^{\circ}$.
- Assumed that the observed deviation of the master RF came from the ADC unstability. -Observed outside of the LLRF, cavity pickup also deviate according to the ADC unstability.
 - Total stability = $\sqrt{(\text{cavity unstability})^2 + (\text{master RF unstability})^2}$

=>Amplitude stability : ±0.03%, Phase stability : ±0.09°

The stability was expected to satisfy our goal.

- We replace the analog LLRF with the digital one
 - -Improve the maintainability and develop technologies for the next generation light source.
- Feature of the new LLRF
 - Adopt non-IQ direct sampling
 - Realize fast bunch phase detection to compensate the TBL in the KEK future light sources.
- Installation status of the new LLRF.
 - Completed cabling and hardware install.
 - Checked the performance of the new LLRF.
 - Achieve amplitude stability of ± 0.01 %, phase stability of $\pm 0.04^{\circ}$ at the tentative tests.
 - Under commissioning to establish the control parameters and procedures for the user operation.
 - Commissioning with storage beam will begin on November 7th.

Thanks to the following MEDS^{*} staff for their dedication to producing the new LLRF system:

T. Iwaki, R. Kitagawa, N. Terada, T. Harigae, S. Yamazaki, and M. Ryoshi

Thanks to the following researchers for useful information and discussions:

T. Ohshima (SPring-8), F. Tamura (JAEA), T. Kobayashi, Y. Sugiyama, K. Futatsukawa, T. Matsumoto, and T. Miura (all of KEK).

*Mitsubishi electric defense and space technology corporation

Appendix

Stability of the analog LLRF system

• Measure the stability of the cavity voltage.

<Amplitude>

<Phase>

- Amplitude stability changes from ± 0.07 to ± 0.52 % (0 mA to 450 mA).
 - Amplitude oscillates with the synchrotron frequency where beam on.
- Phase stability changes from ± 0.55 ° to ± 0.12 ° (0 mA to 450 mA).

Module	Develop policy	Model No.	Company
Shelf	use commercial model	UB1K-6509 (PICMG MTCA.4 R1.0)	U-ber (nVent)
PM	use commercial model	210113-0133	Wiener
MCH	use commercial model	NAT-MCH0CLK-PHYS	NAT
eRTM	use the module developed by SPring-8	72CGR500A01	Candox
μRTM	modify the module developed by J-PARC LINAC	MME-DSV04-B	MEDS*
AMC	modify the module developed by J-PARC MR	MME-ADC22-B	MEDS*

RF control |

-Stabilization of the cavity voltage | adapt the same control scheme as the SPring-8 system. -Control of the cavity tuner | adapt the same control scheme as the Super-KEKB system.

Use and modify modules developed by other institutes => Reduce development costs, periods, risks.

Our goal : Amplitude stability of the cavity voltage < ± 0.1 % Phase stability of the cavity voltage < ± 0.1 °

* Old name : Mitsubishi Electric TOKKI Systems

Feature of the new LLRF -FM/AM modulator-

Adopt FM/AM modulator to mitigate a quadrupole oscillation of the beam.
 Use NCO and synchronize the modulator in all boards.

Feature of the new LLRF -Phase adjust-

Adjust phase shift of the AMC board to the master RF signal.
Phase shift caused by on/off of the electric power.

Fast interlock boad

Unstability of all RF stations (Amplitude)

Unstability (%) $\times 10^3$ I gain 10-600 500 400 300 200 10⁻² 100 0 0 2 3 8 9 10 4 5 6 P gain

<B1>

<A2>

<B2>

<A1>

Unstability of all RF stations (Phase)

<B2>

<B1>

