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Motivation: For large machines like the LCLS-II, effective resonance
control of superconducting RF cavities is critical, due to their high Q and
narrow bandwidth, which make the SRF cavities sensitive to
microphonics. Decrease RF power consumption, cryogenic heat loads
and costs can be achieved by minimizing SRF cavity detuning due to
microphonics.
Common sources of microphonics are helium pressure fluctuation,
vacuum pumps, stochastic background noise, etc.
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Introduction



In recent years, active resonance control (ARC) methods have been
demonstrated at Fermilab, CBETA, DESY and SLAC. These
methods are equivalent to notch filters, usually need the piezo
tuner transfer function, and rely on well-calibrated dynamic
models that require constant manual tuning and characterization
by operators for each cavity.

Banerjee, Nilanjan, et al. Physical Review Accelerators and Beams 22.5 (2019): 052002LLRF Workshop 2023. Gyeongju, South Korea 4
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Goal: Enhance SRF cavity stability and
minimize SRF cavity detuning with a
data-driven model predictive control (MPC)
based on the dynamic mode
decomposition (DMD) method.

MPC allows us to incorporate learned
models into control of individual cavities.

DMD identifies a set of modes to generate
system dynamics.

We plan to implement MPC on an FPGA
for resonance control
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Goal: Enhance SRF cavity stability and
minimize SRF cavity detuning with a
data-driven model predictive control (MPC)
based on the dynamic mode
decomposition (DMD) method.

MPC allows us to incorporate learned
models into control of individual cavities.

DMD identifies a set of modes to generate
system dynamics.

We plan to implement MPC on an FPGA
for resonance control

Needs data to train the DMD model

Computing burden is a concern when
implementing MPC on an FPGA

Introduction
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Plan:
Simulation (MPC and DMD)"

Data acquisition"

Train the model (DMD)"

Implement MPC controller

Test MPC controller using cold cavities

This is a work in progress

Introduction
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The method originated in the fluid dynamics
community in 2010 [1]

Widely adopted due to the formulation as a
linear regression problem based entirely on
measurement data.

We use the model to predict the future status
of the system

Traditional DMD is sensitive to noise, control
inputs and nonlinearity. Multiple noise-robust
approaches and DMD with control have been
demonstrated. We base our implementation
on the linear and nonlinear disambiguation
optimization (LANDO) algorithm, which
enables DMD in highly nonlinear and
high-dimensional systems [2].

Dynamic Mode Decomposition



Cavity state

xk =
[
Vrk Vik V̇rk V̇ik ∆ωk

˙∆ωk

]⊺
Control signals

uk =
[
Vgrk Vgik δωk

]⊺
Relationship between system and control

xk+1 ≈ Axk + Buk

A represents unforced system dynamics
B represents system’s response to control in-
puts
Operator B is unkown, since the forced cavity
system is complex and nonlinear

With DMD, we can rewrite the system as

X′ = GX̃

X̃ =

[
X
U

]
G =

[
A B

]
where

X =
[
x1 x2 · · · xm

]
X′ =

[
x2 x3 · · · xm+1

]
U =

[
u1 u2 · · · um

]
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Dynamic Mode Decomposition



Using kernel methods, we can approximate the previ-
ous equation as

X′ ≈ WK

Polynomial kernel

Ki,j = k(̃xi, x̃j) =
∑
d

αd(̃xTi x̃j)
d
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Dynamic Mode Decomposition



Using kernel methods, we can approximate the previ-
ous equation as

X′ ≈ WK

Polynomial kernel

Ki,j = k(̃xi, x̃j) =
∑
d

αd(̃xTi x̃j)
d

The ”almost linearly dependent” (ALD) test is used to reduce the size of the dictionary.

The matrix of weights W̃ is solved using the pseudoinverse method. More details in [3]
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Dynamic Mode Decomposition
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Dynamic Mode Decomposition
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Predicted cavity voltage vs true
voltage. Real and imaginary
components

Predicted cavity detuning vs
true detuning

4 mechanical modes and 4%
added noise

Test error of about 4%. The
accuracy of the training
depends only on noise,
regardless of the number of
mechanical modes used

DMD predictions using simulated data
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A weight factor vector ξ is included to weight each
objective of Ytarget
Piezo constraints are set to bound the maximum
frequency shift per step, to account for the limited
bandwidth of a real piezo actuator

Model Predictive Control
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A weight factor vector ξ is included to weight each
objective of Ytarget
Piezo constraints are set to bound the maximum
frequency shift per step, to account for the limited
bandwidth of a real piezo actuator

The optimizer performs a basic grid search over the
possible values of the piezo. The value that minimizes the
cost function is selected as the optimal.

Model Predictive Control
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A weight factor vector ξ is included to weight each
objective of Ytarget
Piezo constraints are set to bound the maximum
frequency shift per step, to account for the limited
bandwidth of a real piezo actuator

The optimizer performs a basic grid search over the
possible values of the piezo. The value that minimizes the
cost function is selected as the optimal.

Gain factor g included to generate a smooth control signal

Model Predictive Control
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A weight factor vector ξ is included to weight each
objective of Ytarget
Piezo constraints are set to bound the maximum
frequency shift per step, to account for the limited
bandwidth of a real piezo actuator

The optimizer performs a basic grid search over the
possible values of the piezo. The value that minimizes the
cost function is selected as the optimal.

Gain factor g included to generate a smooth control signal

MPC requires extensive computation. Thus, the
controller’s complexity needs to be reduced. We use a
lightweight model based on dynamic mode
decomposition.

Model Predictive Control
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Amplitude stability to 10−4

Phase stability to less than 1
degree

Cavity detune less than 10 Hz

8 mechanical modes with 1%
added noise.

MPC performance
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Synchronized RF and piezo
waveforms are needed to train
the DMD model

For the LCLS-II system, RF and
piezo waveforms are digitized in
separate chassis

There is a communication
protocol, over fiber links,
between RFS and RES

We included a global timing ID
in the message to time-align RF
and piezo signals

For more information about the
implementation check the
poster ”FW/SW framework for
SRF cavity active resonance
control” by M. Donna

Data Acquisition
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To maximize the hidden features extracted by
the DMDc model, it is essential to diversify the
data as much as possible. This is achieved by
randomizing the driving RF and using a chirp for
the piezo drive.

RF drive should cover the
operational range

Piezo drive frequency should cover
the range of microphonics, up to
200Hz

Piezo drive amplitude greater than
cavity bandwidth, 300Hz

Sampling rate much higher than
possible disturbance frequency.
fs = 16kHz

RF and piezo control loops disabled

Data Acquisition
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To overcome computational
burden, we use the ”almost
linearly dependent” test

The training dataset becomes a
sparse subset of samples that
spans the largest subspace in
the data

From the total dataset only 2%
of samples are used for training

We have collected data for
CM20 cavities 8 and 7, and
CM19 cavities 1 and 2

Data Acquisition



LLRF Workshop 2023. Gyeongju, South Korea 23

Predicted cavity voltage vs true
voltage. Real and imaginary
components

Predicted cavity detuning vs
true detuning

Test error less than 3%

Data from each cavity is needed
to train individual models for
each cavity

DMD predictions using cavity data



Data-driven DMD model represents SRF cavity nonlinear dynamics and predicts the future state of the cavity. This
has been demonstrated with LCLS-II cold cavities

MPC simulations show promising results toward the development of a data-driven SRF resonance controller

We are working on the implementation of the controller on an LCLS-II LLRF resonance control system

The work presented here is not limited to resonance control, it can be adapted to the stabilization of quadrupole
magnets, beamlines, and other systems that have coupling between external vibrational sources and the accelerator
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Summary, Conclusions and Future Work



Thanks to the LCLS-II LLRF team and the SRF team at SLAC, and thanks to the LLRF team at LBNL.
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CM19 cavities 1 and 2 are gradient-limited (12 MV/cavity) due to microphonics. The main sources of microphonics are
liquid helium valve regulation, vacuum pumps, and cool-down valve leaks.

Courtesy of Ryan Porter
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LCLS-II Microphonics
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LCLS-II Resonance Control Firmware
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