Initial test results of an SRF cavity
field and resonance controller based
on DMD
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Introduction

Motivation: For large machines like the LCLS-II, effective resonance
control of superconducting RF cavities is critical, due to their high Q and
narrow bandwidth, which make the SRF cavities sensitive to
microphonics. Decrease RF power consumption, cryogenic heat loads
and costs can be achieved by minimizing SRF cavity detuning due to
microphonics.

Common sources of microphonics are helium pressure fluctuation,
vacuum pumps, stochastic background noise, etc.

—— AverageCMQ, | ———

-

wn
%
©

Required cavity RF power as a function of STD cavity detuning
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Introduction

In recent years, active resonance control (ARC) methods have been
demonstrated at Fermilab, CBETA, DESY and SLAC. These
methods are equivalent to notch filters, usually need the piezo
tuner transfer function, and rely on well-calibrated dynamic
models that require constant manual tuning and characterization
by operators for each cavity.
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Introduction

MPC

Y Optimizer
target u Y
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Surrogate model
(DMD)
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* Goal: Enhance SRF cavity stability and
minimize SRF cavity detuning with a
data-driven model predictive control (MPC)
based on the dynamic mode
decomposition (DMD) method.

* MPC allows us to incorporate learned
models into control of individual cavities.

* DMD identifies a set of modes to generate
system dynamics.

* We plan to implement MPC on an FPGA
for resonance control
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* Goal: Enhance SRF cavity stability and
minimize SRF cavity detuning with a
data-driven model predictive control (MPC)
based on the dynamic mode
decomposition (DMD) method.

* MPC allows us to incorporate learned
models into control of individual cavities.

* DMD identifies a set of modes to generate
system dynamics.

* We plan to implement MPC on an FPGA
for resonance control

* Needs data to train the DMD model

* Computing burden is a concern when
implementing MPC on an FPGA



Introduction

Plan:
MPC ¢ Simulation (MPC and DMD) v
p—— ¢ Data acquisition l/
Viarget > @ﬁ U Yy o * Train the model (DMD) v
surro?g,aeDTOdel * Implement MPC controller
I * Test MPC controller using cold cavities
?

This is a work in progress
l/tanrget = [Vr Vi Aw}

u = dw
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Dynamic Mode Decomposition

Experiment Collect Data
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DMD

a) Diagnostics
+ past future

"

Dynamic modes
= sonweudp awiry,

1 m

b) Future state prediction

Xk+1:AXk

* The method originated in the fluid dynamics
community in 2010 [1]

* Widely adopted due to the formulation as a
linear regression problem based entirely on
measurement data.

* We use the model to predict the future status
of the system

* Traditional DMD is sensitive to noise, control
inputs and nonlinearity. Multiple noise-robust
approaches and DMD with control have been
demonstrated. We base our implementation
on the linear and nonlinear disambiguation
optimization (LANDO) algorithm, which
enables DMD in highly nonlinear and
high-dimensional systems [2].



Dynamic Mode Decomposition

* Cavity state * With DMD, we can rewrite the system as

Xk = |:V,,k V,' Vrk Vik Awk Awk] T X/ = G)’?
e Control signals X — X
U
T
U, = |:Vgrk Vg,- 5wk} G — |:A B]
* Relationship between system and control where
X1 ~= Ax, + Buy
X = [x1 Xg v xm]
A represents unforced system dynamics ,
B represents system’s response to control in- X = [X2 X3 X’"“]
puts — A
Operator B is unkown, since the forced cavity U= [ul Uz u’”}

system is complex and nonlinear
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Dynamic Mode Decomposition

¢ Using kernel methods, we can approximate the previ-
ous equation as
X' ~ wK
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* Polynomial kernel
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Dynamic Mode Decomposition

¢ Using kernel methods, we can approximate the previ- ¢ Polynomial kernel
ous equation as

X' ~ WK Ki; = k(%, %) = Zad(
d
* The "almost linearly dependent” (ALD) test is used to reduce the size of the dictionary.

dictionary-based

explicit model implicit kernel model kernel model
— -~ - ~ - N - = o
_XI_ k(xl,X) k(fl,x)
fox) = = = w S Rl B | A
(nx N) X, (nxm) i (oesar)
n
X1 :
2
M k(x,,, X)
X

* The matrix of weights W is solved using the pseudoinverse method. More details in [3]
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Dynamic Mode Decomposition
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Peter . Baddoo et al. Proceedings of the Royal Society A: Matt
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DMD predictions using simulated data
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* Predicted cavity voltage vs true
voltage. Real and imaginary
components

* Predicted cavity detuning vs
true detuning

* 4 mechanical modes and 4%
added noise

* Test error of about 4%. The
accuracy of the training
depends only on noise,
regardless of the number of
mechanical modes used

X = WE), |,
X1
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Model Predictive Control

Define Objectives

Vaurger = [V Vi Au]

Ve = [V2 V5]
Aw =0
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Model Predictive Control

Define Objectives

Vaurger = [V Vi Au]
Vow = [Vi Vi
Aw =0

Gain Factor g € [0,1]

Setup Controller
Parameters

Weight Factor £ = [w, w; wq)
| Piezo Constraints [—dw,,, dwy, |

Prediction Horizon ky, =
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JFampling

* A weight factor vector £ is included to weight each
objective of Yiget

* Piezo constraints are set to bound the maximum
frequency shift per step, to account for the limited
bandwidth of a real piezo actuator
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Model Predictive Control

Varger = (Vi Vi Au
Define Objectives Viaw = V2 Vi
Aw =0

Gain Factor g € [0,1]
Weight Factor § = |[w, w; wq]

Setup Controller

Parameters ——— Piezo Constraints [—Jw,,,,lfﬁm,,,]»
Prediction Horizon ky, = <=2
Y
[Aw]| <&
N
Optimizer -gw, o = argmin [|€ - (Viuger — Yirea)|
(Uses DMD) | i & targe pred) ||
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* A weight factor vector £ is included to weight each
objective of Yiget

* Piezo constraints are set to bound the maximum
frequency shift per step, to account for the limited
bandwidth of a real piezo actuator

* The optimizer performs a basic grid search over the
possible values of the piezo. The value that minimizes the
cost function is selected as the optimal.

0w € [—6Wmax, OWimaz)
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Model Predictive Control

Yiarget = (V7 Vi Aw]
Define Objectives Veaw = [V; Vi]
Aw =0

* A weight factor vector £ is included to weight each

objective of Yiget
 Gain Factor g € [0, 1] ‘ * Piezo constraints are set to bound the maximum
Setup Controller Weight Factor & = [w, w; wy) f hift + t t for the limited
tup Controll Piezo Constraints [ dwyms &) requency shift per step, to account for the limite
Prediction Horizon ky — 2P bandwidth of a real piezo actuator
\ n
* The optimizer performs a basic grid search over the
v possible values of the piezo. The value that minimizes the
cost function is selected as the optimal.
|Aw|| < e
dw € [_5wmaxy 5wmaac]
N * Gain factor g included to generate a smooth control signal
Optimizer — i . —
(Us%s D) Swopt = argmin 1€ - (Viarger — Yorea) p/
Control signal - Swpr1 = dwie - (1 — g) + dwope
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Model Predictive Control

Viauger = [V Vi A
Define Objectives Veaw = [V; Vi]
Aw =0

 Gain Factor ge0,1]
Weight Factor & = [w, w; wy)
Piezo Constraints [— 0wy, dw,]

Setup Controller

Parameters f )
| Prediction Horizon kj, = %plmg
Y
|Aw|| < e
N
Optimizer ((5 = i (Y, Y,
(Uses DMD) Wopt afgn;t“”f (Yiarget pmd)”p

J

l

Control signal

Swpsr = dwp - (1 — g) + dwope
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* A weight factor vector £ is included to weight each
objective of Yiget

* Piezo constraints are set to bound the maximum
frequency shift per step, to account for the limited
bandwidth of a real piezo actuator

* The optimizer performs a basic grid search over the
possible values of the piezo. The value that minimizes the
cost function is selected as the optimal.

0w € [—6Wmax, OWimaz)

* Gain factor g included to generate a smooth control signal

* MPC requires extensive computation. Thus, the
controller's complexity needs to be reduced. We use a
lightweight model based on dynamic mode
decomposition.

18



MPC performance
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Data Acquisition
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Cavity Signals

* Synchronized RF and piezo
waveforms are needed to train
the DMD model

* For the LCLS-II system, RF and
piezo waveforms are digitized in
separate chassis

* There is a communication
protocol, over fiber links,
between RFS and RES

* We included a global timing ID
in the message to time-align RF
and piezo signals

* For more information about the
implementation check the
poster "FW/SW framework for
SRF cavity active resonance

control” by M. Donna .



Data Acquisition

To maximize the hidden features extracted by

1 s the DMDc model, it is essential to diversify the

| i RE L Y Tk LR Lt A L it - dataas much as possible. This is achieved by
il randomizing the driving RF and using a chirp for
2

the piezo drive.

* RF drive should cover the
operational range
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* Piezo drive frequency should cover

4 400

&
3
Piezo Drive [V]

o
R
2 300
[

the range of microphonics, up to
-1 200Hz

200

* Piezo drive amplitude greater than
cavity bandwidth, 300Hz

500

Detune [Hz]
o

=500

* Sampling rate much higher than
4000 4500 5500 6000 6500 7000 7500 possible disturbance frequency.
Time [ms]
f, = 16kHz

* RF and piezo control loops disabled
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Data Acquisition

* To overcome computational
burden, we use the "almost
linearly dependent” test

-4 * The training dataset becomes a
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DMD predictions using cavity data

Voltage [MV]
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* Predicted cavity voltage vs true
voltage. Real and imaginary
components

* Predicted cavity detuning vs
true detuning

* Test error less than 3%

* Data from each cavity is needed
to train individual models for
each cavity
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Summary, Conclusions and Future Work

* Data-driven DMD model represents SRF cavity nonlinear dynamics and predicts the future state of the cavity. This
has been demonstrated with LCLS-II cold cavities

* MPC simulations show promising results toward the development of a data-driven SRF resonance controller
* We are working on the implementation of the controller on an LCLS-II LLRF resonance control system

* The work presented here is not limited to resonance control, it can be adapted to the stabilization of quadrupole
magnets, beamlines, and other systems that have coupling between external vibrational sources and the accelerator

SLAZL  LLRF Workshop 2023. Gyeongju, South Korea 24



Acknowledgements

Thanks to the LCLS-II LLRF team and the SRF team at SLAC, and thanks to the LLRF team at LBNL.

sLA@ LLRF Workshop 2023. Gyeongju, South Korea

25



References

[1] PETER J. SCHMID. “Dynamic mode decomposition of numerical and experimental data”. In: Journal of Fluid
Mechanics 656 (2010), pp. 5-28. DOI: 10.1017/50022112010001217.

[2] Peter J. Baddoo et al. “Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation
optimization”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 478.2260 (2022),
p. 20210830. DOI: 10.1098/rspa.2021.0830.

[3] Faya Wang. “Enhancing SRF cavity stability and minimizing detuning with data-driven resonance control based on
dynamic mode decomposition”. In: AIP Advances 13.7 (July 2023), p. 075104. DOI: 10.1063/5.0154213.

sL As LLRF Workshop 2023. Gyeongju, South Korea 26


https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1098/rspa.2021.0830
https://doi.org/10.1063/5.0154213

THANK YOU

(O LEUELRADID FREUENCY WORgsyg

LLRF2023

sL,%\G LLRF Workshop 2023. Gyeongju, South Korea

27



LCLS-II Microphonics

CM19 cavities 1 and 2 are gradient-limited (12 MV/cavity) due to microphonics. The main sources of microphonics are
liquid helium valve regulation, vacuum pumps, and cool-down valve leaks.
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LCLS-1l Resonance Control Firmware

Detune Sources detune_source_select

| chitchat

resonance_control_dsp
ciir_bias_counts 1 instance per cavity
- r total

Integrator ctir_bias_select

chr_ulimit  ctir_llimit

Window Limits,

S

1 0or 4 NCOs depending )
on FW version ctlr_select

abPSFH JLab Pl lf

pdect— ] 2 DAC inputs per cavity
prt_in_srel 1]

’—-
D,dauz—‘—-

pztin_src[3:2]
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