
FW/SW framework for SRF cavity active
resonance control

Related to the high precision active motion controller

based on ML, we are going to describe the CI/CD
pipeline for testing and deploying the FPGA FW and

embedded SW for the AMD Xilinx MicroBlaze

processor that is in use at SLAC. We also introduce the
different option to accelerate the SW using HLS flow

to target FPGA FW blocks that replace the non-

performing code. Latest part is to describe the porting
from of the XILINX uBlaze processor to the RISC-V

architecture and design the CI/CD pipeline to obtain

the same results with the open-source architecture.

DESCRIPTION

Simplified Vitis Workflow

Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported
by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under
Contract No. DE-AC02-76SF00515
Many thanks to Claudio Bisegni for his work as DevOps, to Amedeo Perazzo and Yee-Ting Li part of TID SCS for
the help with S3DF settings, to the all LLRF team at SLAC and LBNL for their support and help, and to Alessandro
Ratti and Joshep Delong of EED AD .

Icalepcs2023 -TUMBCMO14 Initial Test of a Machine Learning Based SRF Cavity Active Resonance Control
AMD uBlaze (https://www.xilinx.com/products/design-tools/microblaze.html)

PicoRV32 on XILINX FPGA (https://github.com/YosysHQ/picorv32)

LiteX library (https://arxiv.org/abs/2005.02506)

CDC detection with yosys (https://github.com/YosysHQ/yosys/discussions/3956)

RISC-V SoC Open-Source Tools (https://www.ijraset.com/best-journal/implementation-of-riscv-soc-from-rtl-to-gds-flow-using-opensource-tools)

Kubernetes (https://docs.google.com/presentation/d/1e6RxrR9VMwFN6gESqHmFjNTTHp5lwiGxh9BmqnCm8Ig/edit#slide=id.p1)

SLAC Shared Scientific Data Facility (S3DF) (https://s3df.slac.stanford.edu/public/doc/#/)

M. Donna(1, 2) – mad73@slac.Stanford.edu , J. Diaz Cruz (1, 2), A. Ratti (1, 2, 3), A. Benwell (1, 2), F. Wang (1, 2), L. Doolittle (3),
S. D. Murthy (3), C. Bisegni (1, 2)

1. SLAC National Accelerator Laboratory, USA. 2. Stanford University. 3. LBNL Lawrence Berkeley National Laboratory

High-level synthesis is the process of converting a

high-abstraction-level description of a design to a
register-transfer-level (RTL) description for input to

traditional ASIC and FPGA implementation

workflows. This high-level design description can be
expressed in high-level languages such as C, C++,

SystemC™, or MATLAB®, or graphical environments

such as Simulink®. High-level synthesis tools use
these as forms of design entry, and then synthesize—

or generate—synthesizable Verilog® or VHDL®

from them for use in ASIC or FPGA designs.

HIGH LEVEL SYNTHESIS

REFERENCESACKNOWLEDGEMENTS

AMD (XILINX) MicroBlaze™ CPU is a family of drop-

in, modifiable preset 32-bit/64-bit RISC
microprocessor configurations. System designers can

leverage the Vitis™ core development kit (2019.2), or

the Eclipse-based Software Development Kit (SDK in
2019.1), to start developing for the MicroBlaze

processor using select evaluation kits.

MICROBLAZE VS RISC-V

LiteX already supports various soft cores CPUs and

essential peripherals, with no dependencies on
proprietary IP blocks or generators.

PicoRV32 is a CPU core that implements the RISC-V

RV32IMC Instruction Set. It can be configured and
optionally contains a built-in interrupt controller.

PicoRV32 is free and open hardware licensed under

the ISC license (a license that is similar in terms to
the MIT license or the 2-clause BSD license).

LiteX is a SoC builder / IP library and utilities that can

be used to create SoCs and full FPGA designs. Besides
being open-source and BSD licensed, its originality

lies in the fact that its IP components are entirely

described using Migen Python internal DSL, which
simplifies its design in depth.

Vivado HLS design flow

GitLab's ecosystem is enriched with many features:

• the built-in continuous integration system (CI/CD)
allows you to create a pipeline and control the

lifecycle of the application’s deployment, from

downloading the code to the repository, until it is
uploaded to the production environment

• with Auto DevOps, you can establish a CI/CD

pipeline that automatically detects, builds, tests,
and deploys your projects. Integrated with a

Kubernetes (K8S) cluster, it allows you to deploy

applications with no provisioning of extra CI/CD
resources or configurations required

We have runners set up at LBNL, and we are going to

add many K8 nodes that will support testing,
simulation, compilation, build and deployment, using

dockers

CI/CD AT SLAC

In embedded systems, a board support package (BSP)

is the layer of software containing hardware-specific
boot firmware and device drivers and other routines

that allow a given embedded operating system, for

example a real-time operating system (RTOS), to
function in each hardware environment (a

motherboard), integrated with the embedded

operating system. We like extends the concept to
include also the first layer of HDL code that is directly

connected to the FPGA PIN, so the full stack

SW/HW/FW for the board is specified.

BOARD SUPPORT PACKAGE

This poster is merely a list of action we are (and are

going to) perform on the LLRF system at SLAC in the
coming years.

A big effort has been profuse to prepare the test for
the high precision active motion controller based on

ML; the next step will be to replace the MicroBlaze

with the Risc-V open-source platform, and create the
needed pipeline to compile, test, and co-simulate it

using Dockers containers: LiteX is a starting point, we

need to improve the toolchain to been able to achieve
the same results that we get with MB.

The CI/CD work at SLAC was started 1 year ago, and
the final goal is to have all the LLRF supported board

automatically deployed in our bench test (both at

LBNL and SLAC), fully tested and verified, and ready
for production operations; part of the effort is on the

pipeline and is to set up the runners on our S3DF K8

cloud, for both EPICs and the different FPGA FW.

Another big effort is to improve the quality of the

code, and for that we need to have better Code

Coverage on our testing, and improve the open-
source tool that perform different type of checking

like Linting, Clock Domain Crossing , etc…

CONCLUSION

https://www.xilinx.com/products/design-tools/microblaze.html
https://github.com/YosysHQ/picorv32
https://arxiv.org/abs/2005.02506
https://github.com/YosysHQ/yosys/discussions/3956
https://www.ijraset.com/best-journal/implementation-of-riscv-soc-from-rtl-to-gds-flow-using-opensource-tools
https://docs.google.com/presentation/d/1e6RxrR9VMwFN6gESqHmFjNTTHp5lwiGxh9BmqnCm8Ig/edit#slide=id.p1
https://s3df.slac.stanford.edu/public/doc/#/

	Slide 1: FW/SW framework for SRF cavity active resonance control

