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Microphonic detuning reduction in a SRF TESLA
cavity using the Modified Active Disturbance
Rejection algorithm: Experimental results
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1- Target system: Characteristics and challenges
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Big resonant peak at 160 Hz which generates a step in the
2007 1 phase of almost 180 degrees (low relative stability)
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Nonlinearities such as Lorentz forces, hysteresis on the
piezos and ponderomotive effects
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1- Target system: Piezo assisted Saclay Tuner *

Based in a lever mechanism (Red)

® A stepping motor (Purple) is used to correct slow or static
detuning (Fabrication tolerances, Lorenz forces in CW
operation etc.)

® Two Piezo actuators (Blue) mounted in a piezo holder frame
(Green) are used to correct dynamic detuning.

Piezo tuner Characteristics
® Timedelay=1.2ms

¢ Dynamicrange =+ 100V

® Sensitivity = 4 Hz/V

Piezo histeresis
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*Y. Pischalnikov and C. Contreras-Martinez, Review of the application piezoelectric actuators for srf cavity tuners, arXiv preprint arXiv:2305.06868 (2023). *
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2- Active Disturbance Rejection Control algorithm (ADRC*):
Advantageous characteristics

Its design is almost independent from the
system to control

u
r 1/b Plant Y . Good performance controlling nonlinear systems
” Excellent disturbance rejection capabilities
L Ko =F (1) !
X - Easy to implement
ESO

Has been succesfully implemented in a large
range of industrial applications

IZPILab
* J. Han, From pid to active disturbance rejection control, IEEE transactions on Industrial Electronics 56, 900 (2009). *
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2- Active Disturbance Rejection Control algorithm (ADRC):
Working principle

Proportional controller Decoupled chain of integrators
, , Plant y
Reduction of the plant to a decoupled chain of
integrators
® Almost every system can be forced to behave like a decoupled
chain of integrators via the right feedback law ESO
® That canonical form can be easily controlled via proportional
gains
& = f(x,t) + g(x,t)u  Feedbacklaw [ &' = Az’ + Bu Dynamic linearization via the technique of the observer
4, ,
y = h(z,t) y=Cz
® Every dynamic that is different from the desired canonical form is treated
010 0 0 as a “total disturbance” F(t)
0 0 1 0 _
= = 0 =10 0 Lxn ® F(t) is estimated online via an extended state observer (ESO)
0 0O 1
1
0 00 0 nxn " ® F(t)is fed back into the system in order to force it to behave like a

decoupled chain of integrators IZPILab
n stands for the relative order of the plant (difference between the number of poles and zeros)
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2- Active Disturbance Rejection Control algorithm (ADRC):
Extended State Observer (ESO)

Extended system Extended State Observer

® The system is extended with an extra state in order to isolate in

¢ Itis a Luenberger observer applied to the extended system
it any internal dynamic that we dont want and any external ! ! 9 PPA X y

perturbation Ao ~g v, ="
. f 2 Any unwanted internal dynamics + external perturbations
2= ) .
3 / (they can be unknown) ® L, Defines the dynamic of the observer
’ = ey ¥ ] +
:| 1.2 | 010 0 |
! 001 0
l +1 = 12 =Ft 00 0 1 @
_ 00 O 0 (n+1)x (n+1)
=2
= B, : [ ]
s —— Decoupled chain of integrator 0 Bo ® —
= + _
+1 =0 0= -1
+1 = +
= 1 0 (+1)x1 +1 (n+1)x1 §=(),(\1 % o
— ESO
n stands for the relative order of the plant =10 0 1xm+1
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3- Modified Active Disturbance Rejection Control algorithm

(MADRC?): General look

Original ADRC

Main problem with the ADRC

o Very sensitive to time delay!!

Novel MADRC

Plant

!

ESO

® Main idea: Open loop frequency response analisis and system
stabilization through loop shaping techniques

® The scheme is redefined in order to take out the ESO from the

direct chain, creating the Generalized Extended State Observer Loop Shaping | U

Compensator

Plant

¢ An adjustable gain K, and a loop shaping compensator are
integrated in the direct chain in order to manipulate the open loop
frequency response

*J. Jugo, A. Elejaga, and P. Echevarria, Modified active disturbance rejection control scheme for systems with time delay, IET Control Theory & Applications (2023)

GESO

IZPILabﬁ
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3- Modified Active Disturbance Rejection Control algorithm
(MADRC): GESO

r y
Mathematical definition o &
|_0| é
® The state space controller and the total disturbance is fed back directly 1 N = 1 — ¥
into the ESO &> [Bl—&—T=7—c}—
Al Ay
- -
= ESO
Y 1
¢ where: £
—B 1 0 0 0 \QI
—B2 0 1 -+ 0 0 GESO
A,=A,—LC, - %BEK_(, = ﬂf E R
—Bn1 0 0 1 0
o ok ke k0 Advantages of the GESO
—Br+1 0 0 -~ 0 0
Ky = (ki kzyo o kny 1) (n+1) AR ® The gain of the system for high frequencies (b) is not needed anymore
0 B . . .
1 : : Mathematically identical to the original More compact and easier to implement form
B, = (?B‘f LO) = 1 ﬁ ADRC, just a redefinition of the scheme

® Enables the analisis of the open loop response of the system
IZPILabﬁ

0 ﬁn+1 (n+1)x2
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3- Modified Active Disturbance Rejection Control algorithm
(MADRC): System stabilization by Loop Shaping

Function of K and the loop shaping compensator

r K Loop Shaping u Plant y
* By modifiying K and introducing a loop shaping compensator we Compensator an
can tweak the phase and gain of the system in the desired
frequency ranges in order to enhance the stability margin of the r
system l l
* The Loop Shaping Compensator can be created by a wide range of GESO
controllers and filters, depending on the plant to control
40 30 5 30
IYad MADRC & J,//\ Unstablel i - 1
@ 30 7 o % 20 AV \ = ) % 20 / M
= ! w,=16000 radls = |- — | \Samoe 33 =1 al
£20 _ £ 10 \ 2 £ 10 Stable!
E w=150rad/s 5 €2 <
e E a8 ° g, 3 . Gan<odb
] = R % T s
 J— - *8 = + 19 7 - ks N— -
B 45 E,: 45 [ r 3 = i ‘
E 90 7\\\\ § 122 \ "\\\\ g’m % %0 ,'/7\\
a .135 i 180 Phase crossover S F J \\\ g’wo T Phase crossover \\
-180 = = 3 225 . 3 5 - 270 N
1OFrequency (rad/s) " rrequency (rac) v wugrequency (radls) v 10° Frequency (rad/s) ot
Model of a piezo tuner with 150 ps time delay Open loop of the piezo+MADRC Lead compensator Open loop of the piezo+MADRC+lead
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4- Real testing with the TESLA cavity: Detuning measurement®

¢ A tuneable master oscilator drives the cavity at 1.3 GHz

' Phase stable limiting amplifier varied from 5-10% to 2- ]_(]8

® The transmitted power signal is extracted with a weak coupling pick up

Low Pass antenna
\ [ Filter

U
20(t)—2F(t) ¢ The transmitted power signal undergoes amplification using a phase-
stable limiting amplifier to eliminate amplitude variations
fo

2QL

A . . : . . :
Master Oscillator S Ciroulator 3 stuptuner TESLA Cavity The forward wave signal from this source is split to create a signal path
\-/_\ NS A for phase error measurement
1.3 GHz .

j Input coupler E:’i)kt;:p ® The RF signal is amplified by a Solid State Amplifier (SSA)

| Phase

! Shifter * By adjusting the variable penetration depth of the TTF-IIl input coupler
PLL ! antenna into the beam pipe coupler port, the coupling strength can be
Opened !

: Mixer

|

|

|

|

Af(t) =

tan[A<I>(t)] ® The phase shift is measured by a low-noise RF mixer

® Any phase offsets introduced by the RF cabling can be compensated
using a phase shifter in the reference signal path

IZPILab
*A. Neumann, W. Anders, O. Kugeler, and J. Knobloch, “Analysis and active compensation of microphonics in continuous wave narrow-bandwidth superconducting cavities,” Phys. Rev. Spec.
Top.—Accel. Beams 13, 082001 (2010).
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4- Real testing with the TESLA cavity: System identification

Tuner with piezo Measuring Setup

Master Oscillator SSA  Circulator 3 styp-tuner TESLA Cavity =
WWVV\\\“ ¢ The control loop is closed with a PLL so the injected RF signal is
Input coupler Pick-up always tuned with the cavity
probe
Phase
Shift . . .
thy ® The PLL approximates the detuning comparing the phase of the
PLL incident and transmitted RF signals and corrects the forward signal’s
Ph table limiti lifi -
Closed Mixer 4 ase stable imiting ampfhiner frequency so the cavity is always tuned
Low P ¢ A lock-in amplifier generates a ref. signal with which the cavity is exited
N ow Fass Piezo amplifier
Filter
o )' T ]J Lock-in Amplifier } et ® The measured detuning is passed to the lock in amplifier in order to
oa) = A6 o make a low noise measurement 5
. . g 60 ] ’ . -
Measuremen tS P ‘ ‘ P|ezohl‘steres|s . ‘ gm v_ﬂj/}/}(‘%/‘,\/.‘/ N\M \‘\4\1»\‘.7,)3‘,?‘[, o
g 10 &; . ‘ 1\\“"}{ '/'\Y
¢ A voltage sweep is performed to characterize the static response of the piezo 1 % s w0 20 20 w0 w0 4o
. _ 129996 T N L R
®* A frequency sweep is performed between 0 and 800 Hz, with a step of 0.2 Hz ¢ g | Ju e b, b
1L 1,2999655 20 A m
to characterize the piezo+cavity system (time delay=1.2 ms) ‘ . % ol W s"?
o 0 2 ) § Gl w & |
VO‘IEQQ tothe plezo (V) o 50 100 150 200 250 300 350 4(‘)0

Frequency (Hz) IZP | L%
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4- Real testing with the TESLA cavity: Controller design

Objective Designed controller
f =170 Hz This controller is stable until K= 6.6*104
* The objective of the controller is to reduce stochastic detuning as much as ¢®* GESO = f.= 2000 Hz Then, it gets unstable at 170 Hz

possible in the maximum possible bandwidth

Effect of the controller bandwidth  Effect of the ESO bandwidth ~ ° -00P Shaping Compensator == Notch filter centered in 170 Hz

o N ot /]\ 2 With the notch applied we were
®f ’I\ - g;stbu_lr_lt)ance rejection at low f . f/I\ ® Disturbance rejection at high f/I\ Hypn = 5% + 1140926 i increasz,pthe dan 1o
aplll [ ] notch —
v Stabilty ¢, s2 + 8545 + 1140926 ot
- 120 vy T e e
g e g RS . B ey S I t |t
Z 100 | S . . Imulation resulits
g r & S 3
% - o & % 60 STt = s 100
= ) = < .
— = 4 Gomsiop « MADRC shows superior
— P controller 1
e F p— e — . Pl \ performance to more common
-— . bl .| commomatmtiang oo [ o] 5 800 | o perttes controllers such as P and P!
g AT =150k 3 AN = 1500 2 |
% 0 oA A \L——t=20H] 2 NN\ [ 6= 20001 2 4 i ‘ . .
8 4 g MR e 1;,74;-%%"— e » The notch filter gives the controller
FS \, o — .y . .
£ 45 Z & 45 g Sy Y greater stability margin, allowing for
-9( === ik L . al . L = 9 =1 IR | Liidil i ;""‘ ;'A,,r g 1 i i
" e = “ e = e e - b e o , } increased gain and improved
Frequency (Hz) Frequency (Hz) performance
-20
A compromise between performance and relative stability is needed ! 10 L g8 e

Frequency (Hz)

IZPILabﬁ
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4- Real testing with the TESLA cavity: Setup to test the controller

Experimental setup

Master Oscillator SSA  Circulator 3 stub-tuner TESLA Cavity Tuner with plezo
\/\ Lz d\, * The PLL operates in open loop: It is only used to approximate the

: Input coupler Piokup =2 detuning and not to control the RF signal
: Phase probe . .
| Shifter * The controller closes the loop so the detuning is controlled
: mechanically by the piezo tuners

Z:Lened ! Phase stable limiting amplifier . L
! Mixer 4 + The cavities Q_ is fixed at 107 and a constant 1.3 GHz and 400 W RF
I signal is sent into the cavity generating a 5 MV/m field gradient
! Low Pass . .
: | | Filter FlexRIO Piezo amplifier * The cavity is excited with a 11.4 Hz mechanical perturbation created by
E---- Za?t)l——Af(t) MADRC one of the piezo tuners, to mimic a low frequency constant perturbation

that could be created by rotatory machinery

* The controller tries to correct the detuning generated by the constant

perturbation and external disturbances

FlexRIO NI-7935R

Controllers T,=0.1ps (10 MHz)
Full scale output range = 2 Vpp

IZPILabﬁ
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Detuning (dB)
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Detuning (dB)

— Cpenloop
‘ —— Gin=3310
| &n:SSW‘
\ Gin=77-10" (Notch)
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Results

Gain(10~") Peak value(Hz) RMS(Hz) Bandwidth(Hz)

Open loop 6.2424
33 7.2179
6.6 3.5389
77 2.3252

2.5877
1.4824
1.2264
0.5297

3
4
29

Bk i
‘ I | e gl N\u I
A ¥l Wﬂ"\ :
o ‘ ‘ il Experimental results
0 10 Frequ;:Cy(Hz) 20 25 30 105 1 Frequ;Zy(Hz) 12 125
» As predicted in sumulation, the higher the gain K, the better the
S N —Bpeniaop performance of the controller
: it o e —
Gai 7710 okt B0 i + The Notch filter helped to stabilize the system and alowed us to
<0 = — increase the gain K in more than a decade: from 6.6*10-4 to

77*104

Detuning sum. (Hz)
=
w

_
o

\\\
L]

Detuning (Hz)

We were able to reach a bandwidth of 29 Hz, reducing the peak
detuning by a factor of 3 and the RMS by a factor of 5

“o 10 20 3 40 50 6 70 8 %0 100 0 20 40 60 80 100

Tirnei(s) Frequency (Hz)
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5- Conclusions

* According to the results, the MADRC structure and the designing philosophy that we developed works,
offering a straight forward designing method for microphonic controllers

* When trying to mechanically control a SRF cavity, there is a physical limit that is very hard to overcome
for any controller

* It may be necessary to add additional control elements, such as adaptive feedforward, in order to control
frequency constant perturbations.

* We suspect that some perturbations may be unreachable for our control system, and it may be an
interesting to study that phenomenon in future investigation

IZPlLabﬁ
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