

Model Based Verification

for Multi-Cavity LLRF Control Systems

Burak Dursun, Andrea Bellandi, Cagil Gumus, Christian Schmidt, Julien Branlard, Lukasz Butkowski, Martin Hierholzer, Max Herrmann, Sven Pfeiffer

LLRF Workshop, Gyeongju, Republic of Korea, 26.10.2023

Model Based Verification

for Multi-Cavity LLRF Control Systems

- > System Description
- > Development Workflow
- > Problem Definition
- > Model Based Solution
- > Status and Future Work

Multi-Cavity LLRF Control Systems

Plant and Hardware

Multi-Cavity LLRF Control Systems

Firmware

- Large number of sensor channels
- > Distributed architecture
- > Control action at 9 MHz with ~ 1 μs latency
- > Design optimization for quantization error to achieve tight regulation parameters
- > 20+ years support for various hardware
 - TCK7 (Kintex 7)
 - SIS8300L2 (Virtex 6)
 - RTM-uVM (Spartan 6)
 - PZ16M (Spartan 6)
 - TMCB (Spartan 6)
 - FMC25 (Virtex 5)

Multi-Cavity LLRF Control Systems

Software

LLRF Ctrl

- > Slow feedback control implementation
- > Manipulate fast feedback control (firmware)
- > Generate control tables (setpoint, feedforward, gain) for firmware
- Monitor sensor data and states of the controller
- > Manipulate parameters of hardware/firmware
- > Interface with **DOOCS.**

doocs.desy.de github.com/ChimeraTK

Requirements Specification

Long Term Goals Planning > 1 year

Algorithm Developer Perspective

Software Developer Perspective

Firmware Developer Perspective

Problem Definition

on Realization of a Controller in State Space

An Effective but Tedious Solution Bit and Cycle Accurate Modeling

Model Based Design

As a Complete Workflow

Co-Simulation

An Alternative to Manual Modeling of Design Behavior

17th Int. Conf. on Acc. and Large Exp. Physics Control SystemsISBN: 978-3-95450-209-7ISSN: 2226-0358

ICALEPCS2019, New York, NY, USA JACoW Publishing doi:10.18429/JACoW-ICALEPCS2019-WEPHA023

CO-SIMULATION OF HDL USING PYTHON AND MATLAB OVER Tcl TCP/IP SOCKET IN XILINX VIVADO AND MODELSIM TOOLS

(System)Verilog

External Language Interfaces for HDL

VPI (Verilog 2005, PLI 2.0)
VHPI (2008, 2019)

VHDL

DESY.MSK.FWK

An Open Source Firmware Development Framework

Open Loop Verification of the core FPGA IP for LLRF control

Future Work

Co-Simulation for Co-Processing

Thank you.

Model Based Verification for Multi-Cavity LLRF Control Systems

LLRF Workshop Gyeongju, Republic of Korea, 26.10.2023

DESY.

Deutsches Elektronen-Synchrotron

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

www.desy.de

Burak Dursun burak.dursun@desy.de +49 40 8998 1738

