

Digital direct RF feedback for beam loading reduction at ALBA

Pol Solans Low Level Radiofrequency Workshop 2023

- Introduction
 - ALBA
 - RF system
 - DLLRF
- Direct RF feedback
 - Implementation
 - Experimental results
 - Tune measurement
 - · Longitudinal kicks
- Summary

- ALBA is a 3rd generation synchrotron light source located in Barcelona, Spain.
- User operation since 2012 and currently 12 beamlines.

Parameter	Value	Unit
Energy	3.0	GeV
Current	250	mA
Circumference	268.8	m
Momentum compaction factor	8.9E-4	-
Loses per turn	1.1	MeV
Emittance	4.5	nm∙rad

 Upgrade towards 4th generation planned in 2030: ALBA-II

- Storage Ring: EU HOM damped cavity (500 kV) fed with IOT amplifiers (2x80 kW).
- Booster: 5-cell Petra type cavity and a SSPA (50 kW).

Parameter	Value	Unit
RF frequency	500.0	MHz
Number of cavities	6	-
Total voltage	3.0	MV
Cavity shunt impedance	3.3E6	Ohm
Unloaded quality factor	29500	-
Coupling factor	2.7	-
Beam power	275	kW

IOT transmitter

BO SSPA

ALBA DLLRF is based in the VHS-DC digital board from Lyrtech.

*Courtesy of Angela Salom

 In house firmware: PI and tuning loops, trip compensation, cavity autorecovery and direct RF feedback (drf).

24/10/2023

Digital drf: Implementation

- Direct RF feedback (drf) virtually reduces the impedance of the cavity as seen by the beam.
- It is useful for zero mode instabilities and oscillations mitigation.

Digital drf: Implementation

- Direct RF feedback (drf) virtually reduces the impedance of the cavity as seen by the beam.
- It is useful for zero mode instabilities and oscillations mitigation.

• Gain (G_{dr}) and phase shift (Φ_{dr}) are **easily adjustable** to get desired γ_{dr} and Ψ_{dr} .

SET	TINGS		DIAGNOSTICS				
				I	Q	Amp	Phase
	Write	Read Back	CavityReference	153.87 mV	671.90 mV	689.29	77.10
DRF Enable	on 🗸	True	Cavity Voltage	152.93 mV	670.03 mV	687.26	77.14
DRF Gain	0.4	0.40	Control Action	60.82 mV	266.21 mV	273.07	62.20
DRF Phase	-170	-170.00 deg	Direct Feedback	-61.43 mV	-271.40 mV	278.27	-118.18
			PI Output	124.79 mV	538.80 mV	553.07	76.96

$$\begin{cases} \alpha_{dr} = \left| \frac{I_{drf}}{I_{PI}} \right| \\ \Phi_{dr} = angle \left(-\frac{I_{drf}}{I_{g}} \right) \end{cases}$$

• Gain (G_{dr}) and phase shift (Φ_{dr}) are **easily adjustable** to get desired γ_{dr} and Ψ_{dr} .

SET	TINGS		DIAGNOSTICS				
				I	Q	Amp	Phase
	Write	Read Back	CavityReference	153.87 mV	671.90 mV	689.29	77.10
DRF Enable	on 🗸	True	Cavity Voltage	152.93 mV	670.03 mV	687.26	77.14
DRF Gain	0.4	0.40	Control Action	60.82 mV	266.21 mV	273.07	62.20
DRF Phase	-170	-170.00 deg	Direct Feedback	-61.43 mV	-271.40 mV	278.27	-118.18
			PI Output	124.79 mV	538.80 mV	553.07	76.96

$$\begin{cases} \alpha_{dr} = \left| \frac{I_{drf}}{I_{PI}} \right| = \frac{278}{553} \approx 0.5 \quad \text{mass} \quad \gamma_{dr} = \frac{\alpha_{dr}}{\alpha_{dr} + 1} = 1 \\ \Phi_{dr} = angle \left(-\frac{I_{drf}}{I_g} \right) \approx 0^{\circ} \quad \text{mass} \quad \tan \Psi_{dr} = \frac{\tan \Psi_d + \gamma_{dr} \sin \Phi_{drf}}{1 + \gamma_{dr} \cos \Phi_{drf}} = \frac{\tan \Psi_d}{2} \end{cases} \quad \frac{R_{SL,dr}}{R_{SL}} = \frac{1}{1 + \gamma_{dr} \cos \Psi_{dr}}$$

• Beam loading leads to a synchrotron frequency shift proportional current and cavity impedance.

$$\frac{\Delta f_s}{f_o} = -\frac{I_b \beta Z_i^0}{V_c |\cos \Psi_s|}$$

$$\frac{\Delta f_{s,drf}}{\Delta f_{s,o}} = \Delta Z_i^0 = \frac{1}{1 + \gamma_{dr} \cos \Psi_{dr}}$$

• Beam loading leads to a synchrotron frequency shift proportional current and cavity impedance.

$$\frac{\Delta f_{s,drf}}{\Delta f_{s,o}} = \Delta Z_i^0 = \frac{1}{1 + \gamma_{dr} \cos \Psi_{dr}}$$

• If $\Phi_{dr} = 0^{\circ}$ and $\Psi_d \approx small$ then $\gamma_{dr} \cos \Psi_{dr} \approx \gamma_{dr}$

$$\frac{\Delta f_{s,drf}}{\Delta f_{s,o}} \approx \frac{1}{1 + \gamma_{dr}}$$

P. Solans

- Synchrotron frequency shift due to beam loading:
 - 3 MV up to 100 mA ($\Psi_d = -19^{\circ}$)

- Synchrotron frequency shift due to beam loading:
 - 3 MV up to 100 mA ($\Psi_d = -19^{\circ}$)

drf adjusted in all cavities one by one.

$$\frac{\Delta f_{s,drf}}{\Delta f_{s,o}} = \frac{1}{1 + \gamma_{dr,T}} \qquad \gamma_{dr,T} = \frac{N}{\sum_{i=1}^{N} \frac{1}{1 + \gamma_{dr,i}}} - 1$$

- Synchrotron frequency shift due to beam loading:
 - 3 MV up to 100 mA ($\Psi_d = -19^{\circ}$)

drf adjusted in all cavities one by one.

$$\frac{\Delta f_{s,drf}}{\Delta f_{s,o}} = \frac{1}{1 + \gamma_{dr,T}} \qquad \gamma_{dr}$$

$$\gamma_{dr,T} = \frac{N}{\sum_{i=1}^{N} \frac{1}{1 + \gamma_{dr,i}}} - 1$$

Parameter	Gamma=0	Gamma=1
Zero current freq.	8.93	8.93
Shifted frequency	8.26	8.64
Total shift	0.67	0.29
Reduction factor	-	0.43

 Synchrotron frequency shift reduction is also observed in coherent bunch oscillations after longitudinal kicks.

• Synchrotron frequency shift reduction is also observed in **coherent bunch oscillations** after longitudinal kicks.

- ALBA has implemented a digital drf able to compensate the synchrotron frequency shift due to beam loading.
- Experimental measures and analytical model are in agreement.
- Synchrotron frequency shift mitigation is observed in steady state operation and large coherent oscillations of the beam.

Thanks for your attention