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Multi-dimensional coherent laser combining control
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Enabling future laser plasma wakefield accelerator, and more scientific applications
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Parameter Spec

Beam Energy per 
channel

10mJ

Combined Beam 
Energy

3J

Pulse duration 30 - 130fs

Reprate 1 - 10kHz

Average power 3 - 30kW

Peak power 30 - 100TW
Carrier Frequency 300 THz

Ti:Sapphire CPA 
can achieve these 
peak power, but 
only at very low 
repetition rates.
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Multi-dimensional Coherent 
Laser Combining control
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● Temporal Stacking
○ 4 Cascaded optical cavities
○ 81 amplified pulse train
○ In-pulse gain saturation 

control
● Spatial Combining

○ 3x9 diffractional addition
○ deterministic pattern 

recognition
● Spectral Combining

○ Spectral amplitude control
○ Spectral phase control

● Fast interlock for machine 
protection

1 GHz



Mach Zehnder Interferometer
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As used in LIGO



Mach Zehnder Interferometer, with feedback
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Mach Zehnder Interferometer, as a beam combiner
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Problem for feedback: phase ambiguity
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Coherent optical receiver (heterodyne detection at 300THz)
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Telecom approach, but maybe not suitable for us 

● Too expensive for large number of channels
● Optical LO distribution and synchronization?

○ frequency comb?
● For multi-channel, free space combiner:

○ pointing stability?
○ beam profile variation?
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A N×N beam combiner is almost too hard to control
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Nonlinear,
Non-uniqueness04 ● Detector dynamic range / saturation

● Many-to-one phase-pattern mapping

Time variant,
High noise bandwidth03

● Beam power variation
● Pointing stability
● Polarization stability
● Phase noise bandwidth: ~10 kHz

Non-observable, 
Needs high precision02

● Only beam powers are measurable 
● Phase information are lost @ 300THz
● ~3 nm per degree of optical length control

Large dimensionality01 ● N**2 beams
● N**2 - 1 dimensional action space (phase)

Popular solution: Stochastic Parallel Gradient Descent (SPGD, dither & search)
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Our journey towards a scalable coherence control
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Physics

● Identify
control problems

● Discover
optical physics

● Develop 
simulation

● Characterize 
experimental 
system

● Demonstrate 3x3 
combining

Scalability

● Demonstrate 9x9 
combining

● Demonstrate 
Neural Network 
based pattern 
recognition

● Solve:
non-uniqueness, 
non-observable,
non-linear

Robustness

● Develop 
model-free 
training against 
drift;

● Develop Deep 
Reinforcement 
Learning

● Demonstrate 
experimental 
stabilization

● Study
Online-learning

Speed

● Develop FPGA 
accelerated deep 
learning controller:
○ Xilinx DPU: 1µs
○ High-level 

synthesize ML: 
72ns

○ Portable NN 
Engine: 1µs
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Temporal Pulse Stacking Control
Coherently stack up-to-81 ultrafast laser pulses into one, using resonance optical cavities
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Gires Tournois Interferometer (GTI) as resonance cavity

GTI Optical Cavity physis Control system model

Coherence control by amplitude / phase modulation on each pulse at 1Gsps
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Cascaded optical cavity phases are directly measured
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Single cavity impulse response Cascaded cavity impulse response

using the first order digital filter characteristics
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FPGA based coherence control for 25 pulses stacking
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J. Opt. Soc. Am. B, 35:9, 2081 (2018)

IEEE J. Quantum Electron. 54:1, 2081 (2018)

AM PMOSC
fiber
amp

piezo piezo

piezo piezo

FPGA controller

output
stage one

time, hours

stage two

1.5% RMS long term
1.1% RMS short term

25 pulses added, 
~18x power increase
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81 pulse stacking using VC707+FMC120x2
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81 pulses stacked Coherent Pulse Stacking Control
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81 pulses stacked with intensity RMS stability  < 1%

A. Rainville, M. Whittlesey, C. Pasquale, Y. Jing, Q. Du, and A. Galvanauskas, "Stable and Efficient 
Coherent Pulse Stacking Amplification of 81 Pulses with Four Channel Coherent Spatial Combining 
at 7mJ/Fiber," in CLEO 2023 SF3H.6.



BERKELEY LAB

Spatial Beam Combining Control
Coherently combining up to 81 parallelly amplified laser beams into one, by a single element
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Filled Aperture Diffractive Optical Combining
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Need for many-in-many-out coherence control

Opt. Lett. 42, 4422 (2017)
Opt. Lett. 43, 3269 (2018)
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Superposition of waves
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DOE transmission function

2-D, 8-way, pattern recognition MIMO feedback

Opt. Lett. 44, 4554 (2019)
Opt. Lett. 42, 4422 (2017)
Opt. Lett. 43, 3269 (2018)

2-D, 8-way, ultrafast combiner

Input beam 
complex 

amplitude

Physics
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Identify optical combiner phase transfer function
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Machine Vision based pattern recognition feedback

21Opt. Lett. 44, 4554 (2019)
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Discovered physics of diffractional beam combining 
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81 beams: a simple test bed for a complex problem
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Computer generated hologram enables 9x9x6 degrees of freedom using Spatial Light Modulator

Hologram on SLM for generating 9x9 beams.

• Amplitude: Modulation depth
• Phase: Modulation start offset
• Angle X/Y: Modulation spatial freq. in x/y
• Shift   X/Y: Modulation pixel position
• Beam spacing / shape / profile...

Physics
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Center + upper left beam

System identification: beam phase induced pattern
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Phase scanning two-beam interference data reveals complex transmission function

Center + Right beam

Physics

https://docs.google.com/file/d/1ekvNzfTdcCPjv0JjluPUEoW1MoG8dUGD/preview
https://docs.google.com/file/d/1g7z1Y-sVD-L05NlS9bxyuefXujX9CEhS/preview


BERKELEY LAB

Intensity is function of DOE modulated beam phase
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2 pairs of horizontal / vertical adjacent beam scannings completes the puzzle

Intensity

Beam phase diff DOE phase function

Physics
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Phase function accuracy: < 1.6 deg

9x9 diffraction transmission function characterized
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15x15 transmission function (1st order 9x9)

● Power unit:
○ 1/81 of each input beam

● Amplitude unit:
○ 1/9 of each input beam

measured by 
other test beams

Physics
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Diffractional Combining Physics:
 2-D convolution

81 beams combined 
experimentally

27

input beam DOE transmission function

Ideal input beam phase:

Optics Express 29(4), 5407, 2021

Scalability
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Deep learning based active stabilization
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Neural network translates a 17x17 diffraction pattern into a 9x9 phase error array

Scalability

Image Processing

Estimated 
Beam 

phases

Phase 
setpoints

Pattern Recognition

Gain

Phase 
Shifters

Camera

 200 neurons
81 neurons

400 neurons
285 
neurons

13 October 2020, OSA Laser Congress ATu4A.6
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Training range can be a small fraction of phase space
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Examples of same pattern 
generated by different phases

Non-uniqueness problem addressed

Training dataset phase range:
±40° around optimal

Scalability
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NN recognition even works outside training range
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Step 1

Error (Step 1)

Step 4

Error (Step 4)

Step 8

Error (Step 8)

Step 12

Error (Step 12)

Step 16

Error (Step 16)

Scalability

Prediction accuracy drops, but always > 50%
Step 20

Error (Step 20)
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NN feedback is scalable, faster, no dither, more accurate

31Optics Express, 29(4) 5694, 2021

Scalability

Demonstrated in simulation
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Shooting at a moving target: training in experiment
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Robustness

Training using orthogonally random dithering, faster than spontaneous phase drifting.

Optics Express, 30(8) 12639, 2022

Training on pairing 2 patterns with a known dither Feedback by predicted error using differential mapping



BERKELEY LAB

Experimentally combined 8 beams with < 0.4% RMS stability
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Robustness

Optics Express, 30(8) 12639, 2022
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ML@FPGA + Physics informed control platform
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Cascade 40 times

● Physics informed ML model, training against phase drift
● AI accelerator engine design and development (Larry Doolittle): 

– Support scalable NN structure with fully connected layers and 
ReLU activation (Multi-Layer Perceptron);

– Works on any FPGA device;
– Run-time configurable weights
– Suitable for multi-input, multi-output, real-time feedback 

control
● Demonstrated quantized training, feedback control and FPGA 

inference in simulation:
– Inference time: 131 cycles (1048 ns at 125MHz) for a 

16-input, 8-output, 3 layer, 1600 parameters NN
– Accuracy: 18-bits
– Resource: 40 DSP48E and 40 BRAM18

● Closed loop in simulation
● Experiment development in progress
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Spectral Beam Combining Control
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Broadband spectral combining of three pulse-shaped 
fiber amplifiers with 42fs compressed pulse duration

Optics Express, 31(8) 12717, 2023
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Conclusion
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✓ Physics

● Identify
control problems

● Discover
optical physics

● Develop 
simulation

● Characterize 
experimental 
system

● Demonstrate 3x3 
combining

✓ Scalability

● Demonstrate 9x9 
combining

● Demonstrate 
Neural Network 
based pattern 
recognition

● Solve:
non-uniqueness, 
non-observable,
non-linear

✓ Robustness

● Develop 
model-free 
training against 
drift;

● Develop Deep 
(Reinforcement) 
Learning

● Demonstrate 
experimental 
stabilization

✓Speed

● Develop FPGA 
accelerated deep 
learning controller:

○ Xilinx DPU: 1µs
○ High-level 

synthesize ML: 
72ns

○ Portable NN 
Engine: 1µs
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Thank you!
Collaborators: Tong Zhou, Russell Wilcox, Larry Doolittle, Dan Wang, Siyun Chen, U.Michigan team, et al.
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