

An Intra-pulse feedforward algorithm for improving pulsed microwave stability

Reporter: JIAWEI HAN

Author: Jiawei Han, Hongli Ding, Jinfu Zhu, Haokui Li, Xiwen Dai, Jiayue Yang, Weiqing Zhang

2022-10-24

1 Motivation

- 2 Model and algorithm
- **3** Automation software and verification
- 4 Conclusion and future work

>1 Motivation

- In the pulse operation process of the Dalian Coherent Light Source (DCLS) linear accelerator, the klystron plays an important role in the microwave system.
- During operation in DCLS, we found that there is obvious jitter between adjacent microwaves output by klystron.

Figure2 Jitter between adjacent microwaves

深圳综合粒

2.1 Model expression of the problem

Klystron small-scale linear and amplitude phase jump model: Physical process \rightarrow Abstract model \rightarrow \geq mathematical expression.

Institute of

>2.2 Intra-pulse feedforward algorithm

- To solve the problem of klystron amplitude and phase jump in a small-scale linear amplitude and phase jump model, we designed an intra pulse feedforward algorithm.
 - 1. Get **the difference** between

the measured value and the expected value.

2. Inverse transformation of

klystron small-scale linear and amplitude phase jump model.

3. Compensate for user input values.

Mathematical derivation of intra pulse feedforward algorithm

>2.3 Key parameter of our algorithm

According to our model and algorithm, to suppress amplitude and phase jump, it is necessary to measure the loop phase shift(θ), loop gain(sgain) and kgain parameters.

$$\begin{bmatrix} I_{meas} - I_{adcoffset} \\ Q_{meas} - Q_{adcoffset} \end{bmatrix} = \begin{bmatrix} sgain * cos\theta & -sgain * sin\theta \\ sgain * sin\theta' & sgain * cos\theta \end{bmatrix} \begin{bmatrix} Acos\varphi \\ Asin\varphi \end{bmatrix}$$
$$\begin{bmatrix} Acos\varphi \\ Asin\varphi \end{bmatrix} = \begin{bmatrix} X & cos\theta/sgain & sin\theta/sgain \\ Y & -sin\theta/sgain & cos\theta'/sgain \end{bmatrix} \begin{bmatrix} 1 \\ I_{meas} \\ Q_{meas} \end{bmatrix}, \quad \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} sgain * cos\theta & -sgain * sin\theta \\ sgain * sin\theta & sgain * cos\theta \end{bmatrix}^{-1} \begin{bmatrix} -I_{adcoffset} \\ -Q_{adcoffset} \end{bmatrix}$$
$$\begin{bmatrix} A_1 & A_2 & \dots & A_n \end{bmatrix} = \begin{bmatrix} Sgain & Sgain * kgain \end{bmatrix} \begin{bmatrix} A_i & A_i & \dots & A_i \\ A_1 - A_i & A_2 - A_i & \dots & A_n - A_i \end{bmatrix}$$

> By fitting multiple sets of measured values and solving those matrix, the loop phase shift(θ) loop gain(*sgain*) and *kgain* parameters can be obtained.

>3.1 Automation application software

- ➤ We created a user GUI application based on PyQt.
- The main functions of the software include: LLRF excitation of amp/pha, calculation of key parameters, intra-pulse feedforward switch, etc.

Open-loop	adiust														IQ correct			
Klystron1		Klystron2			Klystron3			Klystron4			Klystron5			Warning, this action will harm the accelerator and should not be used by non-professionals.				
	Cat	Actual	Fot		Actual		Sot	Actual		Sot	Actual		Sot	Actual	1.FFC point		396.0	
	Set	Actual		Set	Actual		Set	Actual		Set	Actual		Set	Actual	2.	IQ correct	•	50
Amp(%)		85.1	Amp(%)		77.4	Amp(%)		77.4	Amp(%)		77.5	Amp(%)		37.8	Amp: Left:	85.1 396.0	Range:	615
Pha(°)		-26.0	Pha(°)		-156.0	Pha(°)		-161.5	Pha(°)		-170.0	Pha(°)		-57.13	IQ.Count:	10	Kgain	2.0
															IQ.A:	1.018	IQ.B:	-0.113
															IQ.C: Sgain:	0.113	IQ.D: Pgain:	1.018 2.79e-04
eed-forwa	ard cont	rol													3.Load para.			
Klystron1		Klystron2			Klystron3			Klystron4	Klystron4			Klystron5						
															\odot SSA	۲	KLY forward	
FFC. Det	tail	Close FFC.	FFC. Det	tail	Close FFC.	FFC. De	tail	Close FFC.	FFC. De	etail	Close FFC.	FFC. De	etail	Close FFC.	O DEFL2		LOAD	O LOAD2
FFC. status 🧶		FFC. status 😑			FFC. status 😑			FFC. sta	FFC. status 🥚			FFC. status			FFC execution			
																Set	A	Actual
eed-forwa	ed-forward adjust														1.Kgain		2.0	
Klystron1		Klystron2			Klystron3			Klystron4			Klystron5				2.FFC enabl	e 🌒 🔍		
															FFC ref	5522.0	18:	23.0
	Set	Actual		Set	Actual		Set	Actual		Set	Actual		Set	Actual	PD.IIK		10.	0
Amp(%)		85.1	Amp(%)		77.4	Amp(%)		77.4	Amp(%)		77.5	Amp(%)		37.8	FFC check	(
Pha(°)		-26.0	Pha(°)		-156.0	Pha(°)		-161.5	Pha(°)		-170.0	Pha(°)		-57.13	1.P	robability de	nsity	
									()			,			Point	460		

>3.2 Experimental verification

- This algorithm can effectively suppress the jitter between adjacent microwaves and improve the amplitude and phase stability (RMS) from 0.11%/0.2° to 0.1%/0.05°.
- It can be seen from the figure that the phase layered jitter phenomenon of microwaves is significantly stronger than the amplitude layered jitter. Therefore, the improvement of microwave phase stability by the algorithm is far better than the improvement of microwave amplitude stability.

Original waveform

Feed-forward waveform

>4 Conclusion and future work

- 1. We propose an **intra-pulse feedforward algorithm** based on klystron small-scale linear and amplitude phase jump model.
- 2. We developed user-level **automation software** that enables our feedforward algorithm.
- **3. Verification** was carried out based on DCLS. The results show that our algorithm can effectively suppress the jitter between adjacent microwaves.
- 4. In the future, we will further accumulate theoretical and practical experience for the Shenzhen mediumenergy high repetition rate X-ray free electron laser (S3FEL) device.

THANKS

Thanks to Beijing Institute of High Energy Physics, Shanghai Institute of Higher Education, Lanzhou Institute of Modern Physics, Peking University, Tsinghua University and DESY